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Abstract
Research Summary: In social networks, isolated sub-

groups often aggregate into a massively connected sub-

group, or a giant cluster, when bridges are built across

subgroups. To understand the roles of bridges in inte-

grating subgroups, we develop models focusing on the

percentage of bridges among all ties. When it is below

1%, diffusion does not affect many individuals because

the system is merely a collection of fragmented sub-

groups. Near 1%, however, we find that a slight increase

in the percentage of bridges leads to sudden widespread

diffusion across many subgroups. This dramatic change

stems from a threshold-like structural characteristic of

the network whereby previously fragmented subgroups

come together abruptly. Our findings suggest that this

integrating role of bridges is an important piece missing

from the literature on small-world networks.
Managerial Summary: Our findings suggest that the

formation of a giant cluster could be a structural precon-

dition for large-scale diffusion. Detection of such clusters

may allow prognostication of the possibility of large-scale

diffusion. With the rise of social media and the availabil-

ity of large amounts of social network data, the ability to

detect giant clusters seems to be more attainable than in

the past; such an ability would be a source of competitive

advantage. We describe methods of detecting giant clus-

ters and analyzing their structural properties using

Received: 3 June 2021 Revised: 14 May 2023 Accepted: 15 May 2023

DOI: 10.1002/smj.3527

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits

use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or

adaptations are made.

© 2023 The Authors. Strategic Management Journal published by John Wiley & Sons Ltd.

2950 Strat Mgmt J. 2023;44:2950–2985.wileyonlinelibrary.com/journal/smj

https://orcid.org/0000-0002-7374-3644
https://orcid.org/0000-0002-8471-3627
https://orcid.org/0000-0002-7436-7265
mailto:schang@london.edu
mailto:jeho0405@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/smj


readily available social network data. With these

methods, entrepreneurs and established firms can stimu-

late user adoption by targeting massive clusters of aggre-

gated subgroups and spreading viral messages about their

new products or services throughout the clusters.
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1 | INTRODUCTION

The knowledge of network structures can push the limit of understanding dynamics in social
phenomena, such as diffusion of an innovative idea or learning across different groups of peo-
ple. An illustration of structural changes in a real-world network gives us a glimpse of how sub-
groups may be knit together in a social system. Figure 1 illustrates changes in the inventor
collaboration network at Samsung Electronics over a period of roughly 20 years. In the early
years, only small isolated subgroups or individuals made up the network (Figure 1a). As inven-
tors began to collaborate with others and to build inter-subgroup ties, which, in this study, are
called “bridges,” the formerly isolated subgroups began to aggregate into a massively connected
subgroup, as shown in Figure 1b,c. The emergence of such a massive subgroup in social net-
works often involves building of bridges between isolated subgroups.

Granovetter (1973, pp. 1370–1371) stressed the importance of bridges in understanding social
dynamics as follows: “They are the channels through which ideas, influences, or information

FIGURE 1 Evolution of an inventor collaboration network at Samsung. (a): 1986–1990. (b): 1991–1995. (c):
1996–2000. In the 1980s, few bridges existed between isolated subgroups in the collaboration networks at

Samsung. During this period, each subgroup worked in isolation. For example, no interaction occurred between

people in the DRAM and SRAM units. A giant cluster developed in the 1990s, growing larger over time. (Color

online) Each node in this network represents an inventor. A link between two nodes indicates that the two

inventors filed one or more patents together during the given period. Node sizes reflect betweenness centralities,

which represent the level of bridging. Different node colors indicate different subgroups detected using a

modularity optimization algorithm (Blondel et al., 2008). This figure was constructed with Gephi using the

Fruchterman-Reingold and force-atlas algorithms.
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socially distant from ego may reach him.” Understanding various structural properties associated
with bridges provide an idea of how a diffusion process unfolds in the social system. Building on
Granovetter's structural view of social dynamics, prior work has advanced understanding in the
contexts of learning (e.g., Cattani & Kim, 2021; Fang et al., 2010; Miller et al., 2006; Schilling &
Fang, 2014), cultural polarization (Adams & Roscigno, 2005; Axelrod, 1997; Centola &
Macy, 2007; Flache & Macy, 2011; Shibanai et al., 2001), imitation (Posen et al., 2013; Posen
et al., 2020), winner-take-all competition (Lee et al., 2006; Lee et al., 2016), and diffusion of inno-
vative ideas (Balachandran & Hernandez, 2018; Cattani & Ferriani, 2008).

On the theoretical front, research on small-world networks (Watts, 1999; Watts &
Strogatz, 1998) has offered sophisticated tools for studying the dynamic role of bridges more sys-
tematically. One of the key findings is that an increase in the proportion of bridges to all ties in
a system accelerates a diffusion process throughout the system. For example, by applying these
tools, Fang et al. (2010) find that as the number of bridges in an organization increases, learning
across subgroups accelerates. However, excessively fast learning with a large percentage of brid-
ges is shown to have deleterious effects on cross-subgroup learning.

Although progress in this stream of research has been impressive, we argue that use of
small-world network tools may result in invalid implications of social dynamics due to the sim-
plifying assumption that all individuals in a given network are connected to one another with
no disconnected parts. Over the last two decades, however, numerous empirical studies suggest
that many large, social networks have only a tiny fraction of bridges (e.g., Cattani et al., 2008;
Fleming et al., 2007; Gulati et al., 2012; Kogut et al., 2007; Onnela et al., 2007; Phillips, 2011;
Uzzi & Spiro, 2005). As a consequence, the presence of isolated individuals or subgroups is not
uncommon. For example, although the largest subgroup at Samsung in 2006 included over 75%
of all inventors working at the firm, bridges in the network that year made up only 1.7% of all
ties, and 25% of inventors was unconnected to the largest subgroup. Despite this reality, it has
been challenging to relax the connected network assumption above due to the difficulties of for-
malizing isolated parts in a network. In particular, Watts (1999: p. 506) articulates those chal-
lenges as follows: “Disconnected graphs pose a problem because they necessarily have L = ∞
(i.e., average social distance becomes infinity), and this makes them hard to compare with con-
nected graphs or even each other.”

To improve our understanding of the dynamic implications of social networks that include
fragmented subgroups, we develop computational models by employing tools from percolation
theory (Christensen & Moloney, 2005; Stauffer & Aharony, 2018), which have been developed at
the intersections of mathematics, polymer science, and statistical physics. With these tools, we
elucidate a less-well-understood, dynamic role of bridges, or what we call “integrating role,” by
relaxing the connected network assumption above. The Samsung case serves as a guide to our
modeling of social networks (e.g., parameter calibration) and the interpretation of our results.

Unlike the accelerating role in research on small-world networks, the integrating role is less
related to the speed of an idea's diffusion and more related to the breadth of diffusion. In the
context of cross-subgroup learning, we find that when the percentage of bridges among all ties
is in the vicinity of 1%, a tiny percentage increase in bridges leads to a quantum jump in the
efficacy of learning.

How can such a tiny change bring about the dramatic improvement in learning? We find
that this dramatic effect stems from the threshold-like structural characteristic associated with
the number of bridges in the system. As shown in Figure 2, overall connectivity across sub-
groups is a function of the percentage of bridges. When the percentage of bridges is below a cer-
tain threshold, the whole system is merely a collection of fragmented parts. Our numerical
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FIGURE 2 Effect of bridges on growth patterns of different subgroups. (a) Subgroup size by increasing

bridges. (b) Illustration of largest subgroups with selected values of p. When the proportion p of bridges is

below threshold pc (i.e., p < pc), the system is merely a collection of disconnected parts, and the largest

subgroup will be small like other subgroups. When p is near the threshold, however, a slight increase in

the proportion of bridges brings members of otherwise unconnected subgroups come together suddenly,

leading to a quantum jump in the size of the largest subgroup. This abrupt change occurs even when

bridges account for only about 1% of all ties in the system. For p > pc, we define this largest connected

group as a “giant cluster,” which exhibits a marked deviation in size from the rest of the population.

(Color online) For all networks, the number of nodes is 1000, and the number of links is 6000. The ratio

of links to nodes is 6, which is observed in Samsung's network in 2006. Each data point here is averaged

over 200 simulations.
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result indicates that this threshold is approximately 1%. In the vicinity of this threshold, adding
a tiny fraction of bridges causes a sizeable percentage of subgroups to be connected together all
of a sudden. This sudden structural change, in turn, prompts the diffusion process to affect a
considerably larger fraction of the population by connecting previously isolated subgroups,
thereby boosting exchanges of diverse ideas across subgroups.

When the percentage of bridges is above 5%, all individuals in our models are connected to
one another with no disconnected parts. Beyond this point, additional bridges tend to reduce
learning performance because faster diffusion of some innovative ideas quickly drives out other
valuable ideas that are scattered across subgroups. This finding is similar to that of Fang et al.
(2010). However, the numerous empirical studies cited above suggest that such high percent-
ages of bridges with no disconnected parts would be unrealistic. Furthermore, adding more
bridges beyond the 5% level not only leads to an excess of bridges but also causes deformation
of within-subgroup ties in our model. This deformation of subgroup structures also deviates
from the reality of social networks. Therefore, the deleterious effects of additional bridges on
learning seem to be a theoretical artifact in the parameter range that diverges from social
reality.

Our key findings speak to the literature on the role of bridges in diffusion. In his seminal
work, Granovetter (1973, p. 1360) identified a fundamental issue: “[H]ow interaction in small
groups aggregates to form large-scale patterns (e.g., widespread diffusion of innovative ideas)
eludes us in most cases.” The substantial research on small-world networks has addressed this
issue by paying attention to the role of bridges in accelerating diffusion. However, Granovetter's
fundamental issue, the essence of which lies in the integration of small isolated subgroups, has
not been fully addressed, as this research stream has assumed away isolated parts in social net-
works. Our work offers a more nuanced view by casting theoretical light not only on the accel-
erating role of bridges, but also on their integrating role. When building bridges across
subgroups is difficult (e.g., inventor collaboration networks), our findings suggest that the inte-
grating role of bridges will be far more pronounced than the accelerating role.

This article is organized as follows. First, we review the literature and outline the theoretical
underpinnings of the two building blocks of social networks: (1) subgroups and (2) bridges. Sec-
ond, we model aggregation of isolated subgroups, including these two building blocks. Next, we
show under what conditions increasing the number of bridges will be conducive to the diffusion
of innovative ideas and the promotion of learning across subgroups. Finally, we conclude by
highlighting key theoretical insights and our contributions.

2 | LITERATURE REVIEW

Diffusion involves the spread of innovative ideas or influences from one individual to another
until many are contacted. In the case of diffusion of an innovation, for example, Abrahamson
and Rosenkopf (1997) noted that information about the innovation spreads from one potential
adopter to another. A case in point is Hotmail, which was the fastest-growing user-based media
company in the late 1990s (Subramani & Rajagopalan, 2003). Hotmail stimulated user adoption
by promoting their slogan, “Get your free e-mail at Hotmail,” which was inserted in the form of
a tagline at the bottom of every e-mail sent out by Hotmail users. The company launched its
service in 1996, and about 1 year later, 10 million subscribers had been attracted, ushering in
the age of “viral marketing.”
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In a broad sense, a diffusion process includes not only simple diffusion of information, but
also more complex forms of diffusion, such as learning or imitation, in which multiple ideas
compete for an adopter's attention. Adoption of each idea depends on the adopter's payoff of
that idea under uncertainty and bounded rationality (e.g., Cattani & Kim, 2021; Fang
et al., 2010; March, 1991; Posen et al., 2013). However, all diffusion processes have one essential
characteristic in common—social actors are susceptible to other actors' influences.

2.1 | Two essential properties of social networks: Subgroups and
bridges

Social networks play an important role in how information spreads from one actor to another
(Abrahamson & Rosenkopf, 1997). Research on social networks identified two essential build-
ing blocks for the architecture of social networks: (1) subgroups and (2) bridges. First, let us
consider subgroups. Each subgroup in a social network is more or less insular from others, and
certain barriers constrain membership overlap across subgroups (Milgram, 1967; Newman
et al., 2002). Centola (2015: p. 1301) described such barriers as follows: “Our embeddedness in
social contexts reflects our interests, appetites, and ambitions, which constrain the social con-
tacts we have…” For example, Girvan and Newman (2002) showed that the coauthor network
among scientists at the Santa Fe Institute came together through similarities of either research
topic or methodology, and that collaboration across subgroups was limited (e.g., scientists work-
ing on the structure of RNA did not collaborate with mathematical ecologists).

Subgroup structures in social networks often reflect redundant ties or overlapping acquain-
tances. Overlap is likely to occur as people become acquainted by meeting friends of their fri-
ends (Granovetter, 1973). In particular, Gans (1982) observed how such overlap occurred when
he was a participant-observer in the Italian community of Boston's West End. Gans (1982,
pp. 340–341) noted:

[He and his wife] were welcomed by one of our neighbors and became friends with
them. As a result, they invited us to many of their evening gatherings and intro-
duced us to other neighbors, relatives and friends… As time went on … other West
Enders … introduced me to relatives and friends, although most of the social gather-
ings at which I participated were those of our first contact and their circle.

Cliquishness among friends and overlap are measured by clustering, which is defined as the
average probability that two friends of a focal individual are also friends of each other
(Newman, 2010; Watts, 1999). Research showed that social networks are characterized by far
higher levels of clustering than nonsocial networks (Newman & Park, 2003).

The second essential building block of social networks is the bridge, which represents
between-subgroup ties. The theoretical foundation of this concept can be traced back to the
1970s, when research on social networks focused mostly on small subgroups at the micro level,
while ignoring how they are tied together at the macro level. Granovetter (1973) saw a paucity
of micro–macro linkages as a fundamental weakness in the early literature. To fill this gap, he
introduced the concept of bridge, which is conceived as a cross-level linchpin connecting differ-
ent subgroups. This consideration of bridge as a cross-level linchpin was an important first step
for building theories of when and how diffusion dynamics within a subgroup may travel to
other subgroups. In particular, Granovetter (1973, p. 1360) envisioned the importance of bridges
as follows:
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But how interaction in small groups aggregates to form large-scale patterns eludes
us in most cases… the analysis of processes in interpersonal networks provides the
most fruitful micro-macro bridge. In one way or another, it is through these net-
works that small-scale interaction becomes translated into large-scale patterns, and
that these, in turn, feed back into small groups.

If a subgroup is isolated such that few bridges connect it to outside communities, informa-
tion originating from that subgroup will not go far beyond itself. The lack of bridges could also
be detrimental to learning or innovation. As individuals learn from one another in a small iso-
lated subgroup, everyone quickly begins looking like everyone else, and knowledge diversity
suffers. In such circumstances, it is impossible for any one individual to learn from others.
Burt (2004, p. 349) described the flip side of this phenomenon as follows: “… people connected
across groups are more familiar with alternative ways of thinking and behaving, which gives
them more options to select from and synthesize.” Balachandran and Hernandez (2018) empiri-
cally showed that the level of bridges between firms with different institutional boundaries is
strongly associated with innovation. Similarly, Cattani and Ferriani (2008, p. 825) found that
creative performance in the Hollywood film industry depends on the presence of bridging ties
between two different parts of the world, where one part maintains “exposure to alternative
sources of inspirations and novel ideas,” whereas the other part provides “the base of legitimacy
and support.” Over the last three decades, there has been substantial progress in understanding
the micro–macro linkages due to both methodological and theoretical advances (see,
e.g., Adams & Roscigno, 2005; Axelrod, 1997; Baum et al., 2003; Centola & Macy, 2007;
Doreian & Stokman, 1997; Flache & Macy, 2011; Shibanai et al., 2001; Snijders, 2001;
Stokman & Doreian, 2001).1

2.2 | Limitations of applying the small-world network tools for
understanding social dynamics

Major theoretical progress on the role of bridges in diffusion dynamics was made when Watts
and Strogatz (1998) developed a formal model of “small-world networks,” in which an increase
in the percentage of bridges in the system reduces its average path length or the number of
degrees of separation. This reduction in average path length was shown to accelerate the diffu-
sion of ideas or influences. In the management area, the small-world network model has gar-
nered considerable attention because this reduction substantially accelerates learning (e.g.,
Fang et al., 2010), imitation (Posen et al., 2020), winner-take-all competition (Lee et al., 2006;
Lee et al., 2016), and information diffusion (Balachandran & Hernandez, 2018; Cattani &
Ferriani, 2008; Watts, 1999; Watts & Strogatz, 1998).

1Some studies cited above suggested that even with a sufficient level of bridges, increased diversity rather than
assimilation among individuals could be possible. Beside structural factor, other factors could affect diffusion dynamics.
For example, individual factors like hatred or religious belief can affect cultural polarization. Complex factors like
symmetry breaking and pattern formation in physics can reinforce division among actors in unexpected ways (Sayama
et al., 2000). In light of these complex factors, the spatial population structure is shown to trigger local ethnic violence
(Lim et al., 2007). Since our focus is primarily on structural factors, consideration of such additional factors is beyond
the scope of the present work. Our position here is simply that the number of bridges can be an important precondition
for large-scale diffusion.
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In this literature, the assumption of full connectedness with no disconnected parts in the
system has been taken for granted primarily because researchers believed that they had no
choice but to ignore disconnected parts; otherwise, researchers would face a daunting challenge
of formalizing isolated parts in a network (Watts, 1999). However, in reality, many large social
networks have isolated parts (e.g., Cattani et al., 2008; Fleming et al., 2007; Gulati et al., 2012;
Onnela et al., 2007; Phillips, 2011; Uzzi & Spiro, 2005). In the mobile call network of a
European mobile operator, for example, 15.9% of subscribers were not connected to the largest
subgroup (Onnela et al., 2007). In the inventor collaboration network at Samsung, about 25% of
inventors were not connected to the largest subgroup.

The small-world network approach limits our understanding of “how interaction in small
groups aggregates to form large-scale patterns” (Granovetter, 1973, p. 1360). In addressing this
issue, researchers using the small-world network tools face two problems. First, these tools do not
allow researchers to model isolated parts. Second, these modeling tools embrace a theoretical
ideal, where the average path length is the shortest, thereby creating too many bridges and unre-
alistically low numbers of within-subgroup ties. This ideal is, again, inconsistent with the empiri-
cal findings of actual social networks, in which the number of within-subgroup ties far exceeds
that of bridges, or between-subgroup ties (Girvan & Newman, 2002; Newman & Park, 2003;
Onnela et al., 2007). For example, 98.3% of all ties at Samsung's inventor collaboration network
are within-subgroup ties. Furthermore, the preponderance of bridges implies that it is rather easy
and costless to build a bridge between two individuals who live in different worlds. This assump-
tion violates the realities of embeddedness of social actors in subgroups, which constrain social
contacts across those subgroups (Centola, 2015; Girvan & Newman, 2002; Newman et al., 2002).
Thus, we argue that blind use of small-world network tools may result in invalid implications of
social dynamics. In particular, excessively fast and widespread diffusion of ideas or influences is
unlikely if the percentage of bridges in the system is not as large as assumed.

2.3 | Large-scale diffusion can happen even when an increase in the
percentage of bridges is small

We relax the aforementioned connected network assumption to highlight a less-well under-
stood role of bridges in social networks for large-scale diffusion, that is, the integrating role of
bridges in tying members of subgroups together into a large conglomerate, or a giant cluster.
Peitgen et al. (1992, p. 16) defined percolation or giant cluster formation as follows: “When a
structure changes from a collection of many disconnected parts into basically one big conglom-
erate, we say that percolation occurs.” The integrating role of bridges in networks is associated
with how widely ideas and influences will diffuse throughout the system. In this study, we focus
more on the breadth of diffusion than the speed of diffusion.

Empirical research suggests that giant clusters in social networks are extreme outliers devi-
ating markedly in size from the rest of the subgroup population. For example, Onnela et al.
(2007) reported that in the mobile call network of a European mobile operator, the giant cluster
consists of 84.1% of its subscribers. In Samsung's inventor collaboration network in 2006, the
giant cluster included over 75% of all inventors. One may conjecture that a large percentage of
bridges must be necessary for so many disconnected parts to aggregate into a giant cluster. Per-
colation theory (e.g., Christensen & Moloney, 2005; Stauffer & Aharony, 2018), which was
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developed to study giant cluster formation in nonsocial networks in the early years, suggests
that this conjecture may not be invalid in many nonsocial networks.2 However, the percentage
of bridges in either of the social networks above is rather small—far smaller than that of
within-subgroup ties. For example, bridges made up only 1.7% of all ties in the Samsung case.

A small percentage of bridges for interweaving many subgroups into a giant cluster seems
to have important implications for social dynamics. Kirkpatrick (2011, p. 7) illustrated how a
large-scale diffusion (e.g., an upsurge of nation-wide protests) can happen via social media like
Facebook: “Ideas on Facebook have the ability to rush through groups and make many people
aware of something almost simultaneously, spreading from one person to another and on to
many with unique ease—like a virus, or meme.” However, such virus-like diffusion may not be
always possible. Katz (1961) noted: “It is as unthinkable to study diffusion without some knowl-
edge of the social structures in which potential adopters are located as it is to study blood circu-
lation without adequate knowledge of the veins and arteries.” Percolation theory suggests that
large-scale diffusion in a nonsocial system (e.g., a massive forest fire) requires a structural
precursor—that is, the formation of a giant cluster. In a social network, we argue that even
without a large increase in the percentage of bridges, a giant cluster could be formed. This for-
mation may be a precondition for large-scale social change.

In the next section, we will validate the two claims: (1) large-scale diffusion can happen in
large social networks if giant clusters emerge and previously isolated subgroups become inte-
grated; this scenario is likely even when an increase in the percentage of bridges is small and
(2) the excessively fast and widespread diffusion that is possible in the presence of abundant
bridges cannot occur in large social networks in reality. We confirm these claims by relaxing
the aforementioned idealized assumptions in small-world network research, while embracing
the essential structural properties of social networks.

3 | MODEL OF BRIDGES AS INTEGRATORS

In this section, we examine the role of bridges as integrators tying together fragmented subgroups.
We do this by gradually increasing the percentage of bridges, which is the key control parameter.
The theoretical issues surrounding this parameter are addressed through formal modeling.

3.1 | Emergence of a giant cluster in Samsung's inventor
collaboration network

Before introducing our model, we describe how increases in the number of bridges over time
tied isolated individuals or small groups together into a giant cluster in the inventor collabora-
tion networks of the semiconductor division at Samsung Electronics. This case serves as a guide
to our modeling of social networks (e.g., parameter calibration) and interpretation of our

2A forest fire cannot spread across gaps in the trees. A necessary condition for the outbreak of a massive forest fire is
that a sufficiently large percentage of trees should act as bridges in the gaps across isolated parts of the forest. For
example, 800,000 acres in Yellowstone National Park burned in 1988. Malamud et al. (1998, p. 1841) noted: “Until 1972,
Yellowstone National Park had a policy of suppressing many of its fires, resulting in a large accumulation of dead trees,
undergrowth, and very old trees.” This left the forest susceptible to a massive fire. Similarly, large-scale electrical
conductivity requires a large percentage of conductive materials to increase their density per unit volume, thereby
bridging gaps across isolated parts (Last & Thouless, 1971).
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results. We construct the network using patent data from the United States Patent and Trade-
mark Office database. Here, we assume that if two inventors patented together, a direct tie
existed between them. We analyze a total of 15,777 US patents (semiconductor-related) filed by
Samsung Electronics from 1982 to 2006.3 In the early years, only small isolated subgroups or
individual isolates existed (Figure 1a). Over time, however, a large subgroup emerged, as shown
in Figure 1b,c. In 2006, the largest subgroup included over 75% of all inventors in Samsung's
semiconductor division with a clustering coefficient of 0.721. We call this subgroup a giant clus-
ter, as it exhibits a marked deviation in size from the rest of the subgroup population.

To understand how the giant cluster formed, we interviewed key informants.4 We learned
that the initial isolation of inventors at Samsung was largely caused by the natural boundaries
that form between subunits made up of inventors with distinct expertise. People from different
subunits tended to work in information silos. For example, the two isolated clusters circled in
Figure 1a represent collaborators in the DRAM and SRAM subunits. One of the key informants
noted that inventors in these subunits did not talk to each other in the 1980s. Top managers at
Samsung believed that these information silos were not conducive to information diffusion and
learning across different subunits. They introduced policies and practices to build bridges across
different subunits, primarily through job rotation and cross-functional meetings. In addition,
Samsung's patent office regularly examined all filed patents, identified researchers with similar
interests, and encouraged collaboration between them. As a consequence, bridges between sub-
units at Samsung Electronics increased over time, but the proportion of bridges to all ties in the
network remained tiny (see Appendix A). For example, the proportion of bridges in 2006 was
only 0.017,5 which seems to reflect the substantial costs of crossing the boundaries of subunits
with distinct specialties. Indeed, job rotation was enacted for only a limited number of experi-
enced people. However, a giant cluster emerged over time. How was this possible? In the next
section, we address this question by developing a model of social networks.

3.2 | Comparison of our network model with related network models

We develop our network model by building on and extending prior work, which includes the
ER model (Erd}os & Rényi, 1960), the WS model (Watts & Strogatz, 1998), and the FLS model
(Fang et al., 2010). Appendix B summarizes similarities and differences between our model and
these models.

First, our model departs from the WS and FLS models in that we relax the connected net-
work assumption, which is that all individual agents in a system are connected to one another
as parts of a single large network. Given the empirical evidence that many real-world social net-
works consist of isolated subgroups of different sizes (e.g., Cattani et al., 2008; Fleming
et al., 2007; Gulati et al., 2012; Onnela et al., 2007; Phillips, 2011; Uzzi & Spiro, 2005), we con-
sider the relaxation of this assumption as a necessary step to go deeper into the dynamic role of
bridges in integrating fragmented subgroups. In this regard, our model is more closely akin to

3Yayavaram and Ahuja (2008) identified 30 semiconductor-related patent classes. Following their selection criteria, we
collect a total of 15,777 US patents filed by Samsung Electronics from the USPTO database. Then, following Fleming
et al.'s (2007) methodology, we construct inventor collaboration networks with moving 5-year windows. For
presentation bravity, we spell out only the last year for each of 5-year periods.
4The key informants included the former president of the semiconductor division, chief technology officer, chief
intellectual property officer, HR manager, and inventors.
5We identified bridging ties among all ties based on the link classification method proposed by Lee et al. (2010).
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the ER model. Like the ER model, ours start with individual isolates or isolated subgroups in a
system. With incremental percentage increases in the number of bridges, both models show a
percolation transition from a collection of fragmented parts to the formation of a giant cluster.
In contrast, such a transition is not of theoretical interest to the WS and the FLS models, given
their connected network assumption.

Second, as discussed previously, the existence of distinct subgroups is central to research on
social networks (e.g., Centola, 2015; Newman et al., 2002; Onnela et al., 2007). The ER model
ignores this social reality completely. As such, random connectivity in a large sparse network
tends to result in poor clustering and a preponderance of bridges in a system; these conditions
are inconsistent with the empirical regularity of social networks—that is, within-subgroup con-
nectivity is far larger than between-subgroup connectivity in social networks (e.g., Girvan &
Newman, 2002; Newman & Park, 2003). Unlike the ER model, our model allows for some
parameter range within which this social reality is embraced.

3.3 | Modeling of giant cluster formation with increasing bridges

The essence of our model of giant cluster formation lies in an increasing proportion p of bridges
to all ties in the network, which contributes to the growth of the largest subgroup up to a theo-
retical extreme, where all individuals in the system are interconnected. We start with the fol-
lowing basic conditions: n individuals exist within a system, which consists of subgroups of an
equal size g at p = 0. On average, each individual has six ties to other individuals within the
same subgroup. This was the situation at Samsung Electronics in 2006, in which the condition
for large, sparse networks was satisfied (Watts & Strogatz, 1998). A high clustering coefficient of
0.721 precludes consideration of the ER model (Erd}os & Rényi, 1960), which is characterized by
poor clustering for the given sparse network condition. High clustering in each subgroup repre-
sents a social circle characterized by a shared context (Blau & Schwartz, 1984; Centola, 2015).
In the Samsung case, a subgroup represents a functional unit for carrying out a certain task
(e.g., the DRAM subunit). All parameters used in this simulation are specified in Appendix C.

To understand the role of bridges in integrating fragmented subgroups, we specify the fol-
lowing procedure for all individuals: Each individual's tie to other individuals within his or her
subgroup is removed with probability p, and a new tie for the focal individual is formed to a
randomly selected individual outside the subgroup—thus, p represents an average proportion
of between-subgroup ties, or bridges, to all ties in the network. When p = 0, the unconnected
subgroup structure above is preserved. That is, individuals maintain ties with others only within
their subgroup boundaries. Therefore, no bridges exist between subgroups, and the whole net-
work is a collection of fragmented parts.

Figure 2a shows that the formation of a giant cluster is characterized by threshold-like
behavior with increasing p. The results demonstrate the relationship between the proportion
p of bridges to all ties in the network and the size of the largest subgroup S, which is measured
as a fraction of the overall system size n. Let pc denote the threshold. When p < pc, even the
largest subgroup will be small, and it is not much larger than other subgroups. For example,
when p = .002, the largest subgroup in Figure 2b is small. Here, bridges, on average, account
for 0.2% of all ties, and 99.8% are within-subgroup ties. When p is just above pc, however, there
is a quantum jump in S with respect to a slight increase in p. To enable the observation of the
fine details of the transition near the threshold, we plot p (the horizontal axis) on a log scale of
base 10, which understates the sharp changes at the transition (see the inset without the log).

2960 CHANG ET AL.



According to our estimation, pc ffi .01 for the chosen parameter conditions here. This means
that bridges, on average, account for 1% of all ties, and 99% are within-subgroup ties. In the
vicinity of p = pc, the addition of a tiny percentage of bridges causes sudden connections among
a sizeable percentage of subgroups and their members. For p > pc, we define this largest sub-
group as a “giant cluster,” which is an extreme outlier deviating markedly in size from the rest
of the subgroup population. The low value of the threshold indicates that a giant cluster can
emerge even if bridges constitute only a tiny fraction of all ties in the system.

As shown in Figure 2b, at p = .05, the growth of S tapers off and all subgroups are con-
nected to one another, and the whole system becomes a single, connected network. This is what
we call the “saturation point.” As mentioned earlier, empirical research on large, sparse social
networks indicates that many real-world social networks include disconnected parts, suggesting
that the costs of building bridges may be high, or some individuals may not want to build brid-
ges with distant others. That is, the range of .05 ≤ p ≤ 1 may be a theoretical artifact for such
social networks.

Figure 3 shows another noticeable divergence between the giant cluster and other subgroups
in terms of their growth trajectories. Let us define the growth rate as the magnitude of change in
subgroup size per incremental increase in p. In the vicinity of p = pc, the growth rate for the larg-
est subgroup peaks. Why does the growth rate peak near the threshold? As p increases, the sub-
groups grow at first by linking to other, isolated subgroups. In particular, when p << pc, new
bridges are more likely to connect two isolated subgroups. In this range, the merged subgroups
look still small relative to the system size n. In the vicinity of p = pc, however, new bridges are
more likely to connect subgroups that have already gone through mergers several times—that is,
merged subgroups tend to crosslink to form a giant cluster. This is an underlying reason for the
peak growth in the largest subgroup. Far above the threshold (i.e., p >> pc), however, its growth
trajectory is positive, but at a steadily decreasing rate as the value approaches zero. As p
approaches the saturation point (p = .05), where all nodes are interconnected either directly or
indirectly, the growth rate tapers off to zero since there is no more room for further growth.

FIGURE 3 Changes in subgroup size with incremental increases in the proportion of bridges. For all

networks, the number of nodes is 1000, and the number of links is 6000. The ratio of links to nodes is 6, which is

observed in Samsung's collaboration network in 2006. Each data point here is averaged over 1000 simulations.
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Unlike in the giant cluster, declining growth rates are observed in the second- and third-
largest subgroups, values for which become negative before all subgroups become parts of a sin-
gle connected network. Such growth trajectories below zero naturally arise because for p > pc,
the giant cluster gobbles up the other subgroups as more bridges are added to the system. To
illustrate why this happens, suppose that the size of the second-largest subgroup is sufficiently
larger than that of the third-largest subgroup. Then, the second-largest subgroup is more likely
to be merged with the giant cluster in a few steps. This is because whenever a bridge is created
with a random rewiring step, the probability that two given subgroups will be merged is propor-
tional to the number of possible links between them which, in turn, is equal to the product of
their respective sizes (numbers of nodes). If this possibility materializes, the second-largest sub-
group will be a part of the giant cluster, and the third-largest subgroup will become the second-
largest subgroup. As assumed earlier, the size of the third-largest subgroup is smaller than that
of the second-largest subgroup. Therefore, the new, second-largest subgroup experiences a neg-
ative change in size. Again, unlike our model, the Watts–Strogatz model reveals no change in
the size of the largest group since all individuals across subgroups stay connected to one
another regardless of changes in rewiring parameters.

4 | SIMPLE DIFFUSION FROM AN INTEGRATOR
PERSPECTIVE

To understand when and to what extent new information diffuses, we first examine a simple
diffusion process, namely the diffusion of a single piece of information from the perspective of
bridges as integrators. We show that the detection of a giant cluster (i.e., if S > Sc, or if p > pc),
which lies at the heart of determining whether a whole network is integrated or fragmented,
allows one to prognosticate the possibility of large-scale diffusion. Suppose that there are
n individuals in the system and that only one of them serendipitously comes across new infor-
mation and diffuses it to her direct contacts with some positive transmission probability. Here,
each individual will be in one of two states with regard to the new information: adoption or no
adoption. For simplicity, the initial adopters of this information will also diffuse it to their direct
contacts with the same transmission probability,6 and this process repeats until no further
direct contacts are left.

To what extent will the information diffuse throughout the system? The answer depends on
whether the focal individual is connected to a small, isolated subgroup or a large subgroup. If
one is interested in the average behavior of the system, the answer depends on the size of the
largest subgroup, S. When S < Sc, or when p < pc, the extent of information diffusion will be
negligible because the size of the largest subgroup will be negligible relative to system size n. As
shown previously, the entire network is simply a collection of many small, isolated parts, and
there will be no giant cluster. On the other hand, when S > Sc, or when p > pc, a giant cluster
will emerge whose size will be proportional to n, whereas the sizes of the second-largest and
other smaller subgroups will remain small, as shown earlier. Then, the extent of information
diffusion will be disproportionately more influenced by the largest subgroup than by any other
subgroup. The more detailed analysis in Figure 4a shows that the size of the largest subgroup
S positively affects the extent of information diffusion. The (blue) closed circle indicates the

6Without loss of generality, we assume that the transmission probability is one. The long-term result will not be affected
by changing it to smaller probability values, which only slow down the diffusion process.
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FIGURE 4 Results of information diffusion. (a) Effect of largest subgroup size on extent of information

diffusion. (b) Effect of bridges on the speed of information diffusion above saturation point. Panel (a) shows that

as the size of the largest subgroup increases, new information diffuses more widely. Panel (b) shows that as the

number of bridges increases, the diffusion speed tends to accelerate when the system is above the saturation

point. For all networks, the number of nodes is 1000, and the number of links is 6000. Each data point here is an

average over 1000 simulations.

CHANG ET AL. 2963



average result of 1000 simulation runs in the real-world network at Samsung for the period
between 2002 and 2006. The solid line represents the analytical result based on our idealized
network models, whereas the triangles represent numerical results, which are averaged over
1000 simulation runs in our idealized network models. The results show that the extent of infor-
mation diffusion measured by the number of information adopters is positively associated with
the size of the largest subgroup S—the larger the size of the largest subgroup, the higher the
extent of information diffusion. More precisely, the extent of information diffusion is propor-
tional to S2 (see Appendix D for detailed analytical results).

We also examine the effects of additional bridges on diffusion beyond the saturation point,
where additional bridges will have no effect on the size of the largest subgroup (recall that
S reaches its theoretical limit at this point). As shown in Figure 4b, an increase in the propor-
tion of bridges to all ties in the network beyond the saturation point tends to accelerate infor-
mation diffusion up to a certain point because given that the giant cluster gobbled up all
previously isolated subgroups, additional bridges will only reduce the average path length in
the network. This result is equivalent to the acceleration effect in much of prior work
(e.g., Fang et al., 2010; Lee et al., 2016; Watts & Strogatz, 1998).

In sum, our analysis of information diffusion suggests that the presence of a giant cluster
can make the system more susceptible to large-scale diffusion. In other words, if we have some
idea of threshold pc, we can get a fairly good idea about the extent of information diffusion—
information diffusion will be far more widespread if p > pc. To validate this claim more system-
atically, we run 100 repeated simulations by using the estimate of the threshold (pc ffi .01) for
determining the presence of a giant cluster. For each simulation of information diffusion in a
network with no giant cluster, a value of p is randomly drawn from a uniform distribution
between 0 and 0.01. For information diffusion in a network with a giant cluster, we split our
analysis into two parameter conditions: (1) the small percentage of bridges and (2) the large per-
centage of bridges. For the small percentage case, a value of p is randomly drawn from a uni-
form distribution between .01 and .05, whereas for the large percentage case, a value of p is
randomly drawn from a uniform distribution between .05 and 1. The results in Table 1 show

TABLE 1 Effect of giant cluster formation on information diffusion and learning.

Average penetration rate
of information

Average learning
performance

(1) Network without a giant cluster (0 ≤ p < .01) 0.054 0.154

(2) Network with a giant cluster if the percentage of
bridges is small (.01 ≤ p < .05)

0.917 0.757

(3) Network with a giant cluster if the percentage of
bridges is large (.05 ≤ p ≤ 1)

0.998 0.506

Difference between (2) and (1) 0.863 (39.72) 0.603 (36.79)

Difference between (2) and (3) −0.081 (−4.17) 0.251 (13.34)

Note: T statistics in parentheses. All p-values for the differences are less than .0001. This table reports the average penetration

rate of new information and average learning performance for three different network architectures: (1) those without a giant
cluster and (2) those with a giant cluster (when the percentage of bridges is low; .01 ≤ p ≤ .05), and (3) those with a giant
cluster (when the percentage of bridges is high; .05 ≤ p ≤ 1). For each simulation in a network with no giant cluster, a value of
p is randomly drawn from a uniform distribution between 0 and .01. For each simulation in a network with a giant cluster for
architecture (2), a value of p is randomly drawn from a uniform distribution between .01 and .05. For each simulation in a

network with a giant cluster for architecture (3), a value of p is randomly drawn from a uniform distribution between .05 and 1.
The results here are averaged over 100 repeated simulations.
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that on average, 5.4% of individuals adopt the new information in the absence of a giant cluster,
whereas 91.7% adopt the information when a giant cluster is present for .01 ≤ p < .05. This dif-
ference is statistically significant. In addition, when the percentage of bridges is sufficiently
large (.05 ≤ p ≤ 1), 99.8% of individuals adopt the new information. The results here support
the claim that information diffusion will be far more widespread in the presence of a giant clus-
ter than without it. In fact, even when the percentage of bridges is rather small (i.e., ranges from
1 to 5%), the claim is supported.

5 | COMPLEX DIFFUSION FROM AN INTEGRATOR
PERSPECTIVE

In this section, we analyze the dynamics of a more complex diffusion, cross-subgroup learning,
from the perspective of bridges as integrators. By focusing on the size of the largest subgroup S,
we show that the presence of a giant cluster (i.e., if S > Sc, or if p > pc) enhances cross-subgroup
learning. As described previously, however, these processes are more complex in that more than
one innovative idea is diffused via interpersonal learning. As such, adding more bridges to the
system is not always conducive to learning.

Given this complexity, we confirm two key claims. First, we test the claim that large-scale
diffusion can happen in a large social network if a giant cluster emerges and brings together
previously isolated subgroups. In the learning context, this means that a quantum jump in the
efficacy of cross-subgroup learning is likely, as an increase in bridges integrates previously iso-
lated subgroups, thereby boosting exchanges of diverse ideas across subgroups. We expect that
this integration effect is likely even with a small increase in the percentage of bridges. Second,
we will show the acceleration effect, or the deleterious effect of excessively fast learning, when
the percentage of bridges is large. In light of findings from numerous empirical studies, we then
argue that this effect cannot occur in large, social networks in reality.

5.1 | Model of interpersonal learning

We first build a family of networks with varying p values as described in the network model sec-
tion. For example, in Figure 2, we create 13 networks by selecting 13 different values for p (see
the details in Appendix C). Then, we run learning simulations for each value of p separately.
We do this to isolate learning dynamics from potentially confounding effects due to
changes in p.

Our learning model consists of two other components: (1) reality and (2) n individuals
with m ideas. Here, we primarily employ the modeling convention of organizational learn-
ing established by March (1991) and modified by Fang et al. (2010). Reality R reflects the
environment, which determines what is good and what is bad. It is represented by
m elements, each of which takes on a value of either 1 or 0. Activity vector ai for individ-
ual i is represented by m elements, each of which takes on a value of either 1 or 0; these
values represent alternative ideas. In sum, each individual tries to select an idea on each
dimension of m to match its corresponding value in R under conditions of uncertainty and
bounded rationality. The idea is considered “good” if it matches. Otherwise, the idea is con-
sidered “bad.”
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To evaluate the performance of each individual, we build on the payoff function Φ(x) pro-
posed by Fang et al. (2010), where ai represents an m-bit string with ai = (x1, x2, …, xm). Rosen-
berg (1979, p. 30) noted: “Improvements in performance in one part are of limited significance
without simultaneous improvements in other parts…” To capture this feature in our payoff
function, an m-bit string is partitioned into equally-sized independent subsets, within which
there are ψ bits whose performance is coupled as follows:

Φ xð Þ= ψ
m

Yψ

j=1

δj+
Y2ψ

j=ψ+1

δj+ � � �+
Ym

j=m−ψ+1

δj

 !

where δj = 1 if xj matches the value of the jth element in R, and δj = 0 otherwise. Note
that 1 ≤ ψ ≤ m.

In this payoff function, ψ serves as a tunable parameter that controls the difficulty of
searching for the right combination to match reality. When ψ = 1, a search is the easiest because
improvements in performance in one part are independent of improvements in other parts. As
the value of ψ increases, the search problem becomes more difficult as parts become more
interdependent.

Now, let us consider interpersonal learning processes. Initially, each individual brings her
own idea on each dimension of m, which is randomly drawn from two possible states: 1 or
0. The probability that each idea is good is 0.3—this probability in prior studies is set at 0.33
(e.g., Fang et al., 2010; March, 1991).7 At time step t, each individual learns from other individ-
uals with direct ties whose connection topology was described in our network model earlier in
this study. In so doing, each individual is likely to assimilate a subset of ideas from “superior
performers,” those individuals whose performance is better than that of the focal individual at
t − 1. If there is only one superior performer, a focal individual adopts the superior performer's
idea on the jth dimension with probability θ, which is the learning rate. If there are multiple
superior performers, and if there is no disagreement among them, the focal individual adopts
the agreed idea on the jth dimension with probability θ. On the other hand, if there is disagree-
ment, the individual adopts the idea held by the majority of superior performers with probabil-
ity θ. A system's performance is then measured as the average performance across all
individuals in the system.

5.2 | Simulation results of basic model

Figure 5a shows the results of the cross-subgroup learning model with n = 1000 when learning
dynamics reach a steady state, where no individuals change their ideas. The details of the other
parameter values are specified in Appendix C. When the fraction of bridges is insufficient
(i.e., p < pc and pc ffi .01), the system is fragmented into many small, isolated subgroups, and
learning performance is poor. As p increases, learning performance improves bit by bit at first.
However, learning performance improves dramatically with a slight increase in the fraction of

7We examine sensitivity to the probability that each idea is good at an initial period. In the baseline model, we set the
probability at 0.3. Here, we vary this probability from 0.1 to 0.5. Appendix G shows that as this probability increases, the
performance curve shifts upward. Nonetheless, the shapes of the curves look similar unless the probability is too high
(e.g., 0.5). This is not inconsistent with the literature on learning.
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bridges near p = pc. Especially in the narrow range for .01 ≤ p ≤ .05, learning performance con-
tinues to increase substantially, and the highest performance observed in this analysis is 0.82 at
p = .05. Beyond this point, however, additional bridges tend to reduce the efficacy of learning.

5.3 | Integration effect: Efficacy of cross-subgroup learning due to
giant cluster formation

In this section, we validate the claim that a giant cluster can emerge in a social system with a
small percentage increase in bridges and that it can act as a knowledge integrator by bringing
together diverse good ideas and knowledge from different subgroups. Our model setup allows
us to test this claim by controlling p. As shown before, there are substantial increases in perfor-
mance for .01 ≤ p < .05. We know that in this narrow range, the largest subgroup S turns into

FIGURE 5 Bridges, largest subgroup size, and learning performance. The result shows that there is a

dramatic jump in learning performance in the range of p between .01 and .05. The inset shows that learning

performance monotonically increases with the size of the largest subgroup in that range. However, when p is

above .05, additional bridges tend to reduce learning performance. The problem complexity is set at ψ = 4. Each

member starts recombination with 30% correct bits at period 0. The learning rate is set at θ = 0.5. Learning

performance is normalized by dividing each outcome by the highest one. Each data point here is averaged over

200 simulations.
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the giant cluster by gobbling up other subgroups. Recall that S increases suddenly with a slight
increase in p when p is just above pc (pc ffi .01) and that S has room for further growth by merg-
ing with other isolated subgroups when more bridges are added. Therefore, the jumps in learn-
ing efficacy may stem from the increases in S. This result seems to capture the integration
effect, which facilitates the diffusion of good ideas between previously unconnected subgroups,
promoting learning widely across subgroups.

To validate this integration effect more systematically, we run 100 repeated simulations by
using the range for .01 ≤ p < .05. For each simulation of cross-subgroup learning in a network
with a giant cluster, a value of p is randomly drawn from a uniform distribution between .01
and .05. For each simulation of cross-subgroup learning in a network with no giant cluster, a
value of p is randomly drawn from a uniform distribution between 0 and .01. As shown in
Table 1, the repeated simulations show that average learning performance is significantly
higher with a giant cluster than without it. Specific values for learning performance are 0.757
and 0.154, respectively. This finding suggests that the giant cluster plays a role of knowledge
integrator in learning across subgroups even when the increase in the percentage of bridges is
rather small.

Argote and Ingram (2000) introduced the notion of knowledge reservoirs, in which diverse
ideas and knowledge are preserved for future use. The literature on learning suggests that learn-
ing processes enhance system performance as lower performers adopt good ideas from higher
performers, while discarding bad ideas over time. Improvement in organizational learning
mainly comes from the availability of diverse knowledge in the system (Cattani & Kim, 2021;
Fang et al., 2010; March, 1991; Posen et al., 2013). To check whether the integration effect stems
from such diversity, we investigate the level of diversity in ideas across a different range of S for
0 ≤ p < .05. We use the measure of diversity developed by Posen et al. (2013), which reflects
how well individuals in the largest subgroup collectively preserve good ideas, or those ideas that
match the values of corresponding elements in reality. Even when S is small for 0 ≤ p < .01, the
system starts with as many diverse good ideas as the case for .01 ≤ p < .05. However, the prob-
lem in the former is that individuals cannot exploit the available diversity to improve their per-
formance because they primarily work in information silos—that is, few bridges allow
individuals in one subgroup to capture good ideas from other subgroups. Consequently, isolated
subgroups as a whole tend to lose a substantial number of good ideas that were available at the
beginning (see Appendix E.1). In contrast, when a giant cluster is present for .01 ≤ p < .05, it
acts as a knowledge integrator whose role is to bring together diverse good ideas and knowledge
by connecting previously isolated subgroups. What is surprising here is that the percentage
increase in bridges is rather small, ranging between 1 and 5% compared to the lower bound (i.
e., 0%) of the parameter space. In sum, good ideas are better retained in the system when there
is a giant cluster.

5.4 | Acceleration effect: Negative effect of fast cross-subgroup
learning due to abundant bridges

Now, we show the acceleration effect, which occurs due to excessively fast learning when brid-
ges become abundant. Our model setup permits us to test this claim by controlling p. Note that
beyond the saturation point (i.e., p ≥ .05), the integration effect vanishes completely since no
more isolated subgroup remain for the giant cluster to integrate with additional bridges. On the
other hand, we expect that additional bridges will reduce average path length and accelerate
learning processes.
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To show this acceleration effect more systematically, we run 100 repeated simulations by
using the range for .05 ≤ p ≤ 1. For each simulation of cross-subgroup learning in this range of
larger percentages of bridges, a value of p is randomly drawn from a uniform distribution
between .05 and 1. Then, we compare this simulation result with the previous one when a per-
centage of bridges is smaller (i.e., .01 ≤ p < .05).

As shown in Table 1, the repeated simulations show that average learning performance is
significantly lower (with T-value of 13.34) in the larger percentage case than in the smaller per-
centage case (values for learning performance are 0.506 and 0.757, respectively). This finding
implies that cross-subgroup learning becomes less efficacious when the percentage of bridges is
larger, given that a giant cluster is formed.

Now, one may wonder why learning performance declines after reaching a peak at the satu-
ration point of p ffi .05. Recall that beyond the saturation point, all individuals in the system are
connected to one another with no disconnected parts—that is, the value of S is at its theoretical
maximum of S = 1. Performance degradation, then, may stem from the decreasing average path
length with the increasing percentage of bridges. Our analysis in fact shows that additional
bridges after the saturation point tend to reduce the average path length L (e.g., when p = .05,
L = 6.93, when p = .15, L = 5.04, and when p = .35, L = 4.33). The literature on small-world
networks has established that smaller average path length leads to faster diffusion of an idea
(e.g., Fang et al., 2010; Watts & Strogatz, 1998). In the context of learning, ideas held by high-
performing individuals are more likely to be appreciated and assimilated by others. Our results
in Appendix E.1 indeed show that performance degradation is associated with the addition of
bridges beyond the saturation point, which tends to reduce the number of good ideas over time.
Our experiment in Appendix E.2 further reveals that the acceleration effect is associated with a
weakened ability to preserve diverse ideas and knowledge for future use. In particular, faster
diffusion of some good ideas hinders the preservation of other good ideas.

5.5 | The negative effects of abundant bridges may not represent
social reality

In summary, our model shows that adding more bridges to the system is not always conducive
to learning. Beyond the saturation point (i.e., p ≥ .05), additional bridges tend to have the dele-
terious effects on learning outcomes. In this parameter range, additional bridges no longer act
as integrators because no more isolated subgroups are left to be integrated. Numerous empirical
studies, however, have shown that when a giant cluster is observed, there exist isolated parts as
well (e.g., Cattani et al., 2008; Fleming et al., 2007; Gulati et al., 2012; Onnela et al., 2007;
Phillips, 2011; Uzzi & Spiro, 2005).

Furthermore, when p approaches 1, our model looks more like a random network model with
too many bridges and attenuation of within-subgroup ties. Although most small-world network
models embrace these idealized properties, they deviate from real-world social networks, where
bridges tend to account for a tiny fraction of all ties. For example, bridges in Samsung's inventor
collaboration network in 2006 made up only 1.7% of all ties. Although the Santa Fe Institute was
renowned for interdisciplinary research, bridging ties across disciplinary boundaries accounted
for only a tiny fraction of all ties in the collaboration network at the institute (Girvan &
Newman, 2002). In general, within-subgroup ties are far more numerous than between-subgroup
ties in social networks (e.g., Girvan & Newman, 2002; Newman & Park, 2003).
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In sum, all these findings suggest that the deleterious effects observed above may be a theo-
retical artifact. In particular, when it is costly for individuals to build bridges across subgroups,
as in inventor collaboration networks, a giant cluster can emerge, but it is unlikely to gobble up
other disconnected parts completely. Then, the aforementioned deleterious effect may not be
realized under this condition, where additional bridges are more likely to be conducive to cross-
subgroup learning.

6 | SIMULATIONS ON DATA FROM A REAL-WORLD
NETWORK

We now run simulations on data from a real-world network to examine the robustness of our
key findings. Given the data constraints, we show two things. First, an increase in the number
of bridges speeds up simple information diffusion. Second, learning improvement is better with
a giant cluster than without it.

The results presented in Figure 6a are generated by running simulations of our information
diffusion model on a real-world network. In this simulation, we consider the largest cluster at
Samsung in 2006 as a giant cluster, utilizing it as a starting point. To add more bridges to this
cluster, we choose a node at random from the cluster. With probability r, we remove the exis-
ting link for the chosen node and reconnect this node to another node chosen uniformly at ran-
dom in the giant cluster, with duplicate links forbidden. Note that the numbers of nodes and
links must remain constant across different networks in order to minimize confounding effects
due to arbitrary increases in these numbers. Given this rewiring procedure, the real-world net-
work has the lowest number of bridges.

With an increase in rewiring probability r, the number of bridges within the network
increases, while the numbers of nodes and links remain constant. For the given range 0 ≤ r < .3,
additional bridges tend to reduce average path length L. For example, when r = 0, L = 5.84, and
when r = .1, L = 4.92. As was the case in the previous simulation results using our network
model, a positive association is observed between the number of bridges and the speed of infor-
mation diffusion—the larger the number of bridges, the faster the information diffusion.

Now, we show the robustness of our key findings with respect to cross-subgroup learning.
The results in Figure 6b were generated by running simulations of learning dynamics on the real-
world network. Like the previous simulation results using our network model, the results here
show that learning performance is significantly higher in the presence of a giant cluster than oth-
erwise, suggesting that the giant cluster plays the role of a knowledge integrator in cross-subgroup
learning. The results on the right were obtained by applying the same rewiring procedure that
was applied in the simple information diffusion simulation above. We consider the largest sub-
group at Samsung in 2006 as a giant cluster and then add new bridges to the largest subgroup by
tuning r, while simultaneously removing the existing link within a given subgroup. The results
suggest that the acceleration effect (i.e., the negative effect of excessively fast learning) would exist
even when we run simulations with the data from the real-world network.8

8Here, we rewire ties between inventors only from the largest cluster of Samsung 2002–2006 (i.e., adding bridges only
between inventors in the largest cluster) and run learning simulations within this cluster. In other words, we ignore
unconnected parts in this experiment because our focus here is to demonstrate that the acceleration effect will exist
even when we run simulations with the real-world network. Therefore, in this experiment, the integration effect from
connecting isolated clusters must not exist a fortiori.
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FIGURE 6 Legend on next page.
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In the results on the left, we investigate how the removal of bridges from the giant cluster
affects learning performance. This type of analysis is known as “breakdown analysis” or
“reverse percolation” in statistical physics (e.g., Albert et al., 2000; Newman, 2010). Again, we
consider the same largest subgroup at Samsung (2002–2006) as a starting point. First, we calcu-
late the betweenness centralities of all the links in the network. Then, we remove the links from
the real-world network with the highest betweenness centralities. Let f denote the fraction of
unremoved links. For example, if we remove the top 70% of links, f = 0.3; then, the links in the
bottom 30% in terms of betweenness centrality remain in the network. The results show that
when f < 0.75, interpersonal learning performance increases. When f ≥ 0.75, on the other hand,
learning performance declines. The overall pattern in learning performance in Figure 6b is
more or less consistent with that from our model in Figure 5.

In sum, the results in Figure 6a,b altogether show the robustness of our key findings. First,
given that the numbers of nodes and links remain constant, the addition of bridges to the sys-
tem results in accelerating information diffusion. Second, learning improvement across sub-
groups is higher with a giant cluster than without it. When there are too many bridges, learning
is less efficacious.

7 | DISCUSSION

In his seminal work, Granovetter (1973, p. 1360) raised a fundamental question of why large-
scale social dynamics (e.g., an upsurge of nation-wide protests or widespread diffusion of inno-
vative ideas) occur sometimes and why they do not at other times. He emphasized the roles of
bridges in addressing this question. Watts and Strogatz's (1998) theoretical work on small-world
networks has had a major impact on our understanding of the dynamic implications of social
networks, one of which is that an increase in the proportion of bridges to all ties in a system
accelerates diffusion throughout the system. Research has made significant progress in elucidat-
ing how bridges affect diffusion phenomena (e.g., Balachandran & Hernandez, 2018; Cattani &
Ferriani, 2008; Fang et al., 2010; Lee et al., 2016; Posen et al., 2020; Vasudeva et al., 2013). How-
ever, the small-world network framework has limitations, one of which results from the simpli-
fying assumption that all individuals are connected to one another with no disconnected parts.
Empirical studies indicate that this assumption tends to be violated in many large social net-
works (e.g., Cattani et al., 2008; Fleming et al., 2007; Gulati et al., 2012; Kogut et al., 2007;
Onnela et al., 2007; Phillips, 2011; Uzzi & Spiro, 2005).

FIGURE 6 Simulations on real-world networks (Samsung's Network 2002-2006). (a) Effect of bridges on

diffusion speed. (b) Effect of bridges on learning performance. Results from simulations on the real-world

networks are consistent with those from the idealized model. In panel (a), the speed of information diffusion is

positively associated with the proportion of bridges. On the right side of panel (b), learning performance is

negatively associated with the number of additional bridges, since the addition of more bridges to the system

reduces its average path length for the given range. On the left side of panel (b), when we remove up to 25% of

the links in the network, learning performance increases. When the removal exceeds 25%, however, learning

performance declines. The pattern of learning performance in panel (b) is, therefore, consistent with the results

from our idealized model in Figure 5. The number of nodes in the largest cluster of Samsung 2002–2006 is 5273.

On the left side, the links with the lowest centralities remain in the network. For example, if the fraction of

unremoved links is 30% (f = 0.3), we remove the top 70% of links, and the links in the bottom 30% in terms of

betweenness centralities remain in the network.
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To improve our understanding of the dynamic implications of social networks in the pres-
ence of fragmented subgroups, we develop computational models by employing tools from per-
colation theory (Christensen & Moloney, 2005; Stauffer & Aharony, 2018), which allows us to
relax the connected network assumption above. We find a less-well understood role of bridges,
which is related to how widely ideas, influences, and information will be diffused. In the con-
text of cross-subgroup learning, we find that when the percentage of bridges in the system is
below 1%, the efficacy of learning is poor. In the vicinity of 1%, however, a slight increase in the
number of bridges leads to a quantum jump in the efficacy of learning. This dramatic impact on
learning stems from the threshold-like structural characteristic in our network model, which
reflects the essence of some large, social networks in reality. When the percentage of bridges is
below threshold pc (pc ffi .01), the whole system is merely a collection of fragmented parts. In
the vicinity of this threshold, however, adding a tiny fraction of bridges causes a sizeable per-
centage of subgroups to be connected together all of a sudden. This sudden structural change
with the emergence of a giant cluster, in turn, prompts the diffusion process to affect a consider-
ably larger fraction of the population by connecting previously isolated subgroups, thereby boo-
sting exchanges of diverse ideas across subgroups.

7.1 | Danger of blindly applying the small-world network tools

Our work suggests that blind application of small-world network tools in social dynamics
research may potentially result in invalid implications. In this study, we revisit the received
view that adding too many bridges to a system results in excessively fast diffusion of some ideas
while driving out others, thereby impairing learning (Fang et al., 2010). Our results show that
cross-subgroup learning benefits from the addition of bridges insofar as subgroups are not
completely connected to one another. Once all subgroups are completely connected and no iso-
lated parts remain, additional bridges tend to have deleterious effects on learning performance,
as in the received view. In this parameter range, however, adding bridges via rewiring proce-
dures eventually leads to both an excess of bridges and attenuation of within-subgroup ties, def-
orming the subgroup structure inherent in social networks. That is, the resultant network
structures tend to diverge from social reality. The upshot is that danger of applying the small-
world network tools lies in misinterpreting such results as if they could occur in reality.

7.2 | Formation of a giant cluster could be a structural precondition
for sudden large-scale change

Understanding the threshold-like structural condition identified in this study provides a
glimpse of how dynamics can unfold throughout a social system. Kirkpatrick (2011) illustrated
how anti-government influences can spread from one person to another and to many via
Facebook, resulting in an upsurge of nation-wide protests. Abrahamson and Rosenkopf (1997)
articulated that in the case of diffusion of innovation, information about the product is spread-
ing from one potential adopter to another. For example, Hotmail stimulated user adoption via
one of the first viral marketing tools, attracting 10 million adopters within a year.

Our findings suggest that giant cluster formation could be a structural precondition for
large-scale social change. The ability to detect a giant cluster may facilitate prognostication of
the possibility of large-scale diffusion. In Appendix F, we outline our methods for detecting
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giant clusters and analyzing their structural properties using readily available social network
data from social media. Applying these methods, entrepreneurs and established firms can stim-
ulate user adoption by targeting clusters of massively aggregated subgroups and spreading viral
messages about their new products or services.

In addition, companies can enhance learning and collaboration across different subunits by
shaping the evolution of informational networks to form a giant cluster. Such cross-fertilization
is known to be crucial for learning and innovation (Balachandran & Hernandez, 2018;
Henderson & Cockburn, 1996). However, we often observe that people in different subunits
tend to work in information silos, largely due to the natural boundaries that form between sub-
units with distinct expertise. As discussed earlier, Samsung was no exception in the 1980s. To mit-
igate this silo effect, top managers at Samsung introduced policies and practices to build bridges
across different subunits through job rotation and cross-functional meetings. In addition,
Samsung's patent office regularly examined all filed patents, identified researchers with similar
interests, and encouraged collaboration between them. Over time, the company witnessed a sud-
den emergence of a giant cluster, where individuals could easily gain access to information and
facilitate exchanges of ideas and knowledge with one another. This recipe for enhancing cross-
functional learning can be benchmarked and further developed by other companies.
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APPENDIX A: RELATIVE GROWTH IN THE NUMBER OF BRIDGES AT SAMSUNG

The proportion of bridges to the total number of ties in Samsung's network remained quite limited for many

years. The average proportion of bridges was 0.035. The largest proportion was 0.05 in 2000. We identified

bridges from other links using the link classification methodology of Lee et al. (2010).

APPENDIX B: THEORETICAL STUDIES OF NETWORKS

Connectedness
assumption

Emergence of
a giant cluster

Existence
of
subgroups

Within-
subgroup
connectivity

Between-
subgroup
connectivity

Watts and
Strogatz
(1998)

Yes Irrelevant Yes Tunable Tunable

Fang et al.
(2010)

Yes Irrelevant Yes Tunable Tunable

Erd}os and
Rényi
(1960)

No Relevant No Unrealistically
low

Unrealistically
high

Our model No Relevant Yes Tunable Tunable

CHANG ET AL. 2977



APPENDIX C: PARAMETERS

Model Parameters Remarks
Range of parameter values
analyzed

Network model n Number of individuals in a
network

1000

g Number of individuals in each
subgroup when p = 0

20

p Proportion of between-
subgroup ties (bridges)

0.0001, 0.0002, 0.0005, 0.001, 0.002,
0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1

Interpersonal
learning
model

m Dimension for ideas 120

ψ Degree of complexity 4

θ Learning rate 0.5

APPENDIX D: ANALYTICAL RESULTS OF DIFFUSION EXTENT

Our model includes n individuals who are equally divided into n/g subgroups (n/g < n). As
described in the main text, the diffusion process begins with individual i who is exposed to new
information. Let si(n/g) denote the normalized size of the subgroup to which a randomly
selected individual i belongs. Let pi(n/g) denote the probability that i will be chosen from this
subgroup. In the limit of large time steps, the extent of information diffusion, Di(n/g), will be
equal to the size of that subgroup. Thus, the average diffusion extent E(Di(n/g)) can be
described as follows:

E Di n=gð Þð Þ=
Xn

i=0
Di n=gð Þ=

Xn

i=0
pi n=gð Þ � si n=gð Þ ð1Þ

To determine the relationship between Equation (1) and the normalized size of the largest
subgroup, we need to investigate its size distribution. Consider first the network of each sub-
group. Random graph theory predicts that when the average link per node is larger than 1, all
individuals will be interconnected if their ties are randomly made. Since the average link per
node is 6 in our model, all individuals in each subgroup tend to be interconnected, implying
that the average size of the largest subgroup in each subgroup approaches the size of a
subgroup, g.

Let L(n/g) denote the normalized size of the largest subgroup in the entire network. As L(n/
g) increases, the probability of having an initial spreader of new information from the largest
subgroup increases proportionally. In this case, the probability of having the information
spreader from the largest subgroup is L(n/g), and the diffusion extent is L(n/g). On the other
hand, the probability of having the information spreader from the set of all other subgroups will
be 1-L(n/g), and the diffusion extent is approximately equal to g. Therefore, the average diffu-
sion extent can be approximated as follows:
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E Di n=gð Þð Þ≈L n=gð ÞL n=gð Þ+ 1−L n=gð Þð Þg=L n=gð Þ2+ 1−L n=gð Þð Þg ð2Þ

When the number of subgroups n/g is sufficiently large, g will be close to 0. For example, in
our toy model, n/g = 50 and the size (proportion of individuals in a subgroup to the total num-
ber of individuals in the organization) of each subgroup = 0.02. Thus, when the number of sub-
groups in the organization is sufficient, the average extent of knowledge diffusion can be
approximated as follows:

E Di n=gð Þð Þ≈L n=gð Þ2 ð3Þ

APPENDIX E: BRIDGES, LARGEST SUBGROUP, AND KNOWLEDGE DIVERSITY

E.1 | Effect of bridges on number of good ideas

Panel E.1 shows that in the range of p between 0 and 0.01, the system tends to lose a substantial number

of good ideas over time. When a giant cluster is present in the range of p between 0.01 and 0.05, the addition

of bridges to the system tends to help retain more good ideas over time. Beyond p ffi .05, however, additional

bridges tend to reduce the number of good ideas.
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E.2 | Cost of being “too small”

The results show that the number of newly recombined knowledge components via cross-subgroup learning

is smaller in the “too-small-world” case (i.e., p = 1) than in the modest setting (i.e., p = 0.05). We define

knowledge component as a unit of knowledge that carries a positive value only if all ideas in the component

are good. In the-too-small-world case, the faster diffusion of the ready-made knowledge components, which

are given initially by the experimental setup, deters building of new knowledge components. The number of

nodes in the networks for both cases is 1000, and the number of links is 6000. Each data point here is

averaged over 200 simulations.

APPENDIX F: METHODS FOR DETECTING THE PRESENCE OF A GIANT
CLUSTER

Here, we introduce methods to detect a giant cluster and determine its size across a variety of
social media. These methods may be utilized in viral marketing campaigns when companies
launch their new products or services. At the heart of them is distribution sequence, which rep-
resents expansion of the chain of a neighborhood of a subgroup (Lee et al., 2016; Watts, 1999).
For example, let us consider the individual marked with the closed circle at step 0 in
Appendix F.1. This individual has nine nearest neighbors, or direct contacts, all of whom are
one step away from the focal individual. If we take one step further to the second-nearest neigh-
borhood, there are two new neighbors. If we take one more step to the third-nearest neighbor-
hood, there are 18 new neighbors. After this, we cannot take a further step because the
subgroup on the right is isolated from the larger one on the left. To sum up, the number of new
neighbors at every step in the chain of neighborhood relations expands: 9, 2, 18. A distribution
sequence is a cumulative sequence of this new neighbor sequence, which expands: 9, 11, 29.
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F.1. | Illustration of expansion of distribution sequence through chain of
neighborhood

The visualization of a distribution sequence makes it easier for empiricists and practitioners
to detect the presence of a giant cluster and determine its size, thereby prognosticating the pos-
sibility of large-scale diffusion. The examples in Appendix F.2 illustrate typical expansion pat-
terns of the largest subgroup for varying values of p in our model of social networks. Each
graph shows an increase in the cumulative number of people reached as a randomly chosen
individual's influence in a given subgroup moves through the chain of its neighborhood one
step at a time. As the proportion of bridges increases, the largest subgroup becomes larger and
larger up to p = .05, beyond which an S-shaped pattern becomes more pronounced and steeper
with increasing p .
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F.2. | Expansion patterns of distribution sequence for varying values of p

Note. (Color online) To calculate the cumulative number of nodes reached, we first choose an individual in

the largest subgroup of each network. Then, from the selected individual, we calculate a series of distribution

sequences by tracing additional steps in the chain of neighborhood. In our idealized networks with varying

values of p, the blue-colored nodes are individuals in the largest subgroup in those networks. For all networks,

the number of nodes is 1000, and the number of links is 6000. The ratio of links to nodes is 6, which is

observed in Samsung's collaboration network in 2006.

Appendix F.3 shows a comparison of expansion patterns of distribution sequences for differ-
ent subgroups. Obviously, the expansion pattern of the giant cluster with larger p is markedly
larger and steeper (with a more pronounced S-shaped pattern) than those of others. Although
these patterns are structural properties reflecting the different characteristics of chains of neigh-
borhoods, these patterns have dynamic implications—the dynamics of simple diffusion of new
information will roughly match these patterns, as shown in the Simple Information Diffusion
section. In other words, the knowledge of such an expansion pattern offers a glimpse of how a
diffusion process may propagate throughout the system if it actually occurs.
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F.3. | Comparison of expansion patterns of distribution sequence by subgroup type

For all networks, the number of nodes is 1000, and the number of links is 6000. The ratio of links to nodes is 6,

which is observed in Samsung's collaboration network in 2006. Each data point here is averaged over

200 simulations.

In addition, the method above can be utilized to detect the presence of a giant cluster and
determine its size in a real-world network. For example, we apply this method to detect the
structural properties of Samsung's inventor collaboration networks over time. Appendix F.4
exhibits the expansion patterns of distribution sequences for three selected largest subgroups in
Samsung's inventor collaboration networks for 1990, 2000, and 2005, respectively. The largest
subgroup for 2005, which includes 82% of all inventors at Samsung's semiconductor division at
that time, is larger than the other two. Furthermore, the S-shaped pattern of this subgroup is
steeper than those of the others.
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F.4. | Expansion patterns of distribution sequence of largest subgroups at Samsung

Note. (Color online) For each network, we choose a random person in the largest subgroup and calculate the

distribution sequence. In Samsung's 2005 network, the number of individuals in the largest subgroup is 4925

(82.4% of the total of 5977 individuals). In Samsung's 2000 network, the number of individuals in the largest

subgroup is 1592 (57.4% of the total of 2774 individuals). In Samsung's 1990 network, the number of

individuals in the largest subgroup is 20 (11.05% of the total of 181 individuals).

Recall that the patterns here do not represent intertemporal diffusion dynamics. They only
reflect the structural properties of the largest subgroups as well as their chains of the neighbor-
hood relations. Based on this structural information, however, we can predict that if new infor-
mation spreads through these subgroups, it will be far more widespread in the largest subgroup
for 2005 than in the others. The method here can also be utilized for viral marketing campaigns
when companies launch their new products or services. For instance, one can apply this
method to detect the presence and determine the size of a giant cluster across a variety of social
media. We believe that this type of analysis can help companies in determining suitable market-
ing channels for spreading their viral messages.
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APPENDIX G: SENSITIVITY TO THE PROBABILITY THAT EACH IDEA IS GOOD
AT INITIAL PERIOD

We examine sensitivity to the probability that each idea is good at period 0. Here, we vary this probability

ranging from 0.1 to 0.5. In the baseline model, we set the probability at 0.3. As this probability increases, the

performance curve shifts upward. Nonetheless, the shapes of curves look similar unless the probability is too

high (e.g., 0.5). The problem complexity is set at ψ = 4. The learning rate is set at θ = 0.5. Learning performance

is normalized by dividing each outcome by the highest one. Each data point here is averaged

over 200 simulations.
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