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Research summary: The literature on network effects has implicitly assumed that an increase
in the size of the installed base magnifies network effects, which is a source of incumbency
advantage. We argue that the overemphasis on this relationship has resulted in controversy and
confusion in the literature, where the role of social networks remains largely unaddressed. By
developing computational models of network effects with various network structures, we show
that social distance in a customer network plays a moderating role that strengthens or weakens the
relationship between the installed base and network effects, which in turn, affects the durability of
incumbency advantage. When the average social distance between members in a customer network
is large, the incumbency advantage will not be amplified, and an entrant with an incompatible
product or service may find ways into the market. On the other hand, when the average social
distance is small, early entry with a growing installed base will magnify incumbency advantage.

Managerial summary: In evaluating the strength of incumbency advantage or determining the
price of an early mover, the size of the installed base has been widely used. We find that it is
not a sufficient statistic, and confusion and error appear to result from assuming that it is. Our
study suggests that degrees of separation, a measure of social distance in a network, can provide
managers with an additional yardstick to sharpen their evaluation. When customer networks are
characterized by fewer degrees of separation, the conventional use of the installed base as a
metric may be reasonable. On the other hand, when customer networks are characterized by
larger degrees of separation, the conventional use may potentially mislead managers in their
decision-making. Thinking about the roots of user benefits (e.g., access to a few significant others
vs. hubs) may be a reasonable starting point for assessing degrees of separation in a customer
network. Copyright © 2015 John Wiley & Sons, Ltd.

INTRODUCTION

Over the last three decades, numerous studies have
examined the relationships among the installed
base, network effects, and the durability of com-
petitive advantage (e.g., Arthur, 1989; Farrell and
Saloner, 1985; Katz and Shapiro, 1985; Lee, Lee,
and Lee, 2003; Lee, Lee, and Lee, 2006; Schilling,
2002; Zhu and Iansiti, 2012). Network effects are

Keywords: advantage; entry; network; small world; tech-
nology
*Correspondence to: Jeho Lee, 599 Gwanangno, Gwanak-gu,
Seoul, 151–916, Korea. E-mail: jeho0405@gmail.com

Copyright © 2015 John Wiley & Sons, Ltd.

defined as user benefits arising from compatibility
among different users, enabling them to interact or
trade with other users or use the same complemen-
tary products (Farrell and Klemperer, 2007). The
received view is that the benefits of adopting a net-
work product or service grow as its installed base, or
the total number of adopters, increases. In his sem-
inal theoretical work, Arthur (1989) derived a pre-
diction popularly known as the “winner-take-all”
outcome. When two or more incompatible products
compete for customers, the product with the larger
installed base magnifies customer benefits. Accord-
ing to Arthur, the leading product with more benefits
will attract more customers, whereas lagging
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products with fewer benefits may lose their market
shares. Over time, this self-reinforcing process, or
positive feedback process, will amplify the advan-
tage for the leading firm with the larger market
share, thereby increasing incumbency advantage.

However, critics have argued that the benefits
and durability of strong network effects have been
overemphasized (e.g., Liebowitz, 2002; Liebowitz
and Margolis, 1990; Schmalensee, 2000). The self-
reinforcing relationship between an installed base
and customer benefits is an important assumption
that leads to the winner-take-all outcome in Arthur’s
(1989) theoretical work. However, this assumption
has been controversial, leading to confusion among
managers and policymakers. For example, on the
eve of the new millennium, the instant messaging
(IM) market was dominated by America Online
(AOL). Although AOL’s large installed base was at
the heart of the antitrust policy debate, the advan-
tage based on its installed base was not amplified
over time. In recent years, Facebook has built up a
huge installed base in many countries. However, the
size of Facebook’s installed base has neither driven
out other social networking services nor blocked
new entrants to the market. Our observation of
these anomalies motivated the present study.

Like research on network effects, the broad
strategy literature has been largely inconclusive
regarding whether or not incumbency or first-mover
effects confer durable competitive advantage (e.g.,
Ethiraj and Zhu, 2008; Lieberman and Mont-
gomery, 1988; Mitchell, 1991). The implications
of these mixed results in the literature are often
conflicting and confusing to both laymen and prac-
titioners. Due to the complexity of the phenomena,
development of a broadly applicable theory appears
to be very difficult. As Camerer (1991) suggested, it
may be fruitful, at least for the moment, to focus on
developing theories of middle range by identifying
the boundary conditions under which incumbency
advantage may or may not be durable. Indeed,
Mitchell (1991) took an early step in this direction.

The objective of our work is to identify such
boundary conditions by focusing on the structure
of social networks, which has been largely unad-
dressed in the discussion of incumbency advantage.
Social networks come in different shapes and have
various network properties (Carter and Levy, 2012).
Network structure is especially relevant to social
networking services, such as Facebook and Twitter,
where user benefits mainly come from user–user
interactions. Recently, these social media gained

popularity and made their way into mainstream
society, and companies began to use them to lis-
ten and respond to their customers, who can tell
their friends their happy or unhappy feelings about
a company’s service or product with just a few
clicks (Kerpen, 2011). Word-of-mouth marketing
has long been considered as a very effective way
to influence customers’ choices, but little has been
known about how to trigger a word-of-mouth pro-
cess. Recently, some social media began to provide
companies with systematic tools to influence chan-
nels through which words can spread.

The main focus of our theoretical work in this
study is degrees of separation, a measure of dis-
tance in social networks. We view this factor as
a moderator that sometimes strengthens (via a
self-reinforcing process) and at other times weak-
ens (in the absence of a self-reinforcing process) the
relationship between the installed base and network
effects. In particular, we demonstrate numerically
that the degrees of separation in a customer net-
work determine the boundary conditions for durable
incumbency advantage. When customer networks
are characterized by fewer degrees of separation,
a large installed base confers incumbency advan-
tage in the presence of the self-reinforcing process
described above. In these cases, early entry is cru-
cial for firm survival.

On the other hand, when a customer network is
characterized by larger degrees of separation, the
self-reinforcing relationship between the installed
base and network effects is no longer guaran-
teed. Consider, for example, the benefits (network
effects) to typical users of IM or Facebook. These
benefits do not come from all individuals in the
installed base, but mostly from direct exchanges
with a small number of significant others. Further-
more, strangers are not allowed to contact most
users. This built-in mechanism limits both the
scope of the network’s connectivity and incum-
bency advantage. In this situation, we show that
incumbency advantage is limited, and that latecom-
ers have a better chance of survival.

This paper is organized as follows. First, we
review recent advances in complexity theory, which
have offered tools for tackling the complexity of
social networks. Applying a new perspective based
on this research, we develop our propositions.
Second, we build models of incumbency advantage
based on network effects, using some of these tools.
Finally, we discuss the implications of our findings
in light of the extant literature.

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 1632–1648 (2016)
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THEORY AND PROPOSITIONS

One argument that has gained popularity in
research on network effects is that an entrant
with a new incompatible technology may not
gain a foothold in markets where an incumbent
has built up a large installed base (Arthur, 1994).
David’s (1985) historical work on QWERTY, the
standard keyboard in use today, has been used as
historical evidence for this argument. QWERTY
has persisted since its introduction in 1873 despite
the fact that an allegedly more efficient design
became available later on. Despite the popularity
of this argument, it has triggered bitter debate in
the literature. Liebowitz and Margolis (1990) noted
that the history of technology competition has very
few examples of lock-in to an inferior technology.
For example, recent empirical work on the home
video game industry by Shankar and Bayus (2003)
does not support Arthur’s argument. Invoking the
notion of creative destruction (Schumpeter, 1950),
some critics have argued that innovative entrants
can wipe out incumbency advantage based on
network effects (e.g., Farrell and Klemperer, 2007;
Liebowitz, 2002; Schmalensee, 2000).

A stream of theoretical research has tried to
shed light on this debate by building sequential
entry models. In a setup typical of these models,
an early mover builds up its market share alone
at stage one. Then an entrant introduces a new
incompatible product or service, thereby competing
for a customer base. Prior work has shown that the
survival of the entrant depends on the incumbent’s
market share (i.e., its installed base), the date of
introduction of the new product or service, costs,
strategic pricing, consumer heterogeneity, and the
quality of the network products or services (e.g.,
Farrell and Klemperer, 2007; Farrell and Saloner,
1985; Katz and Shapiro, 1992; Lee et al., 2003;
Zhu and Iansiti, 2012).

In determining the value of a network, prior
research has predominantly regarded the installed
base as the most important factor. At the heart
of durable incumbency advantage lies the
winner-take-all process, which requires a spe-
cial assumption that the relationship between
an installed base and the benefits of adoption
(network effects) is self-reinforcing. In this regard,
Arthur (1989: 124) noted: “It is… not sufficient
that a technology gains advantage with adoption:
the advantage must (at some market share) be
self-reinforcing.”

Ironically, nowhere can one find a “network” in
typical network effect models. For example, it is
hard to find any network in Arthur’s (1989) math-
ematical model. This raises the question as to why
the phenomenon was ever called “network effects”
when discussion of the network itself seems to be
missing. We argue that Arthur’s self-reinforcing or
positive feedback process arises in certain types of
networks, but is not guaranteed to occur in other
types of networks. In the following sections, we
identify the boundary conditions for incumbency
advantage by explicitly taking network structure
into account.

Key network properties

The paucity of research on networks in general
stems from their bewildering complexity, which
often defies analytical tractability (Strogatz, 2001).
Until recently, researchers have had difficulty even
describing or representing social networks mathe-
matically. The past 15 years, however, have seen an
explosion of research on the structure and dynam-
ics of networks, offering systematic ways to cope
with the complexity inherent in social networks
(e.g., Barabási, 2002; Buchanan, 2002). We briefly
review this new stream of research with a focus on
three key related network properties: (1) degrees
of separation, (2) distribution sequence, and (3)
clustering. In particular, we use these properties
to unpack the puzzling relationship between the
installed base and network effects.

Degrees of separation

Degrees of separation represent social distance
between members of a network. Consider a com-
plete network, an extreme type of network with
the smallest average distance between nodes. Here,
every individual is directly connected to every other
individual. A family network is an example of this
type. When any two family members are selected
at random, each is always one step away from the
other. In technical terms, a network of this sort has
a characteristic path length of one, or one degree of
separation.

The complete network has been the implicit
basis for customer networks in the literature on
network effects. This approach is consistent with the
typical assumption of full information in economic
models—every economic agent knows what every
other agent has been doing (e.g., has complete

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 1632–1648 (2016)
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knowledge of who adopted what). An attractive
quality of this approach is that specific details
about the network are unnecessary. This explains
the absence of details about the network in Arthur’s
(1989) mathematical model on network effects.
Furthermore, the simple structure of the complete
network enables rigorous mathematical analysis.

However, the complete network assumption is
unrealistic for representing customer connectivity
in the market. When the number of individuals in
a network increases by N, the number of possible
connections increases by N(N – 1)/2. When N is
sufficiently large, it becomes unrealistic for every
customer to interact with every other customer in
the market, and the degrees of separation tend to
grow in the absence of mechanisms to reduce them.
Therefore, a more reasonable assumption in a large
network is that each customer usually maintains
contact with a small number of other customers.
Consider the case of the Buddy List for instant
messaging (IM) in the 1990s. AOL estimated that
its clients built up lists of about 20–50 people (The
Ottawa Citizen, 1999). Obviously, no user can build
up a network that includes all the other users in the
market. Such a long list would not feasibly fit onto
the computer screen, nor would it be useful, since
the benefits of IM use come from exchanges with
significant others.

Recent studies in complexity theory have offered
some meaningful ways to characterize large-
scale networks in the form of “large-world” and
“small-world” networks. A network is a large-world
network, or a network of local interaction, when
the number of degrees of separation grows linearly
with the size of the network (Watts and Strogatz,
1998). An extreme theoretical possibility is the
connected caveman network in Figure 1, in which
distinct local subnetworks are nearly isolated from
one another (Fang, Lee, and Schilling, 2010; Watts,
1999). Consider, for example, users of corporate
IM in a company that restricts connections to
outside individuals for security purposes. This
restriction localizes interactions among individuals
mainly within the boundaries of the company,
isolating this corporate IM subnetwork from other
IM subnetworks. Individuals in the corporate IM
subnetwork tend to converse with many of the same
nearby work acquaintances. Granovetter (1973)
argued that information traversing through such a
network is likely to be limited to a few clicks, which
tend to share redundant ties. They tend to increase
the number of steps needed for an individual to

Figure 1. Connected caveman network

reach out to another individual in an entire network
composed of multiple IM subnetworks (the char-
acterization here does not rule out the possibility
of disconnection between subnetworks). In this
example, the network depicts a fairly large number
of degrees of separation between individuals; it is
thus a large-world network.

Another class of network is the small-world
network, which is a network of global interaction,
where the number of degrees of separation grows
only logarithmically with the size of the network
(Watts and Strogatz, 1998). Studies have identified
two important elements of small-world networks:
(1) bridges and (2) hubs.

First, a bridge is defined as “a tie between
two nodes that would otherwise be much farther
apart” (Granovetter, 1973). For example, consider
small-world networks with bridges, such as an
e-mail network. An e-mail user may frequently
exchange messages with her nearby coworkers, but
she may also get messages from or respond to indi-
viduals from any random place in the world. Such
random connections beyond physical proximity
are examples of bridges; their role was emphasized
by Granovetter (1973). People often get more
new information (useful in job searching, e.g.)
from random contacts than from their friends and
family members, because those random contacts
act as bridges connecting diverse members from
different, or often socially distant, subnetworks. In
social relations, bridge-building mechanisms, such

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 1632–1648 (2016)
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as conferences, parties, or social mobility, are often
deliberately created to facilitate interactions among
random contacts or strangers to cross the local
boundaries of familiar worlds. Watts and Strogatz
(1998) showed that a sufficiently small number
of bridges can dramatically reduce the number of
degrees of separation within an entire network. For
example, Fleming, King, and Juda (2007) noted
that inventor collaboration networks in Silicon
Valley had been characterized as large-world
networks for a long time, but a dramatic reduction
in the number of degrees of separation occurred
in the 1990s. This sudden reduction was attributed
to the creation of bridges through the mobility of
some scientists from one company to another.

The second element of a small-world network
is the hub, whose role is illustrated in Albert,
Jeong, and Barabási’s (1999) research on the World
Wide Web (WWW). Despite the vast number of
documents on the WWW, two randomly chosen
documents were estimated to be only 19 clicks
away from each other. This small number of degrees
of separation was attributable to the presence of
hubs or extremely well-connected nodes. For
example, the structure of the Twitter user network
is characterized by hubs, the connectivity of which
to other users is unrestricted. Kwak et al. (2010)
showed that most Twitter users have only tens or
hundreds of followers, but hubs, such as famous
politicians, celebrities, or media companies, may
have millions or tens of millions of followers.

Distribution sequence

The power of modern network theory is that
researchers can infer dynamic properties from
limited knowledge of topological properties. In
particular, by analyzing the distribution sequence
of a network, patterns in adoption dynamics can
be inferred (Watts, 1999). To illustrate this point,
consider again, the connected caveman network
in Figure 1. Here, each local subnetwork has
five members, all of whom are connected to one
another. A pair of two adjacent local subnetworks
is minimally connected such that only one link
exists between them. Consider the simple diffusion
process in which the focal individual with the
arrow tries to spread information to every other
member of the network step by step through the
chains of neighborhoods. The information will
first spread to the focal individual’s four nearest
neighbors, who will diffuse it to the second nearest

neighbors at the second step. The number of the
second nearest neighbors here is 2. At the third
step, the information will diffuse to the third nearest
neighbors, whose number is 8. In the connected
caveman network, there is a pattern in which the
number of new neighbors comes up at each step:
4, 2, 8, 2, 8, 2, 8,… (before the sequence runs out
of new neighbors). At every two steps, the number
of new neighbors comes up: 6, 10, 10, 10, . . . . The
distribution sequence is a cumulative sequence
of this new neighbor sequence, which expands at
every two steps: 6, 16, 26, 36,.... The upshot is that
the distribution sequence grows slowly or linearly
in the connected caveman network.

Figure 2 shows that the pattern in the expansion
of the distribution sequence is closely associated
with degrees of separation. In general, the distri-
bution sequence grows slowly in a network con-
nected by a large number of degrees of separation.
For example, the connected caveman network as
a large-world network is linked by 100.7 degrees
of separation in a network with a size of 1,000. If
the focal individual tries to spread information to
every other member of the network step by step
through the chains of neighborhoods, it takes 200
steps to reach everyone else. On the other hand,
when a network is characterized by a small num-
ber of degrees of separation (e.g., the reduction
of degrees of separation to 4.7 and 17.4 degrees
of separation in the two networks in Figure 2 is
due to the presence of bridges), it takes very few
steps to reach everyone else. As shown in Figure 2,

Figure 2. Degrees of separation and expansion of dis-
tribution sequence. Note: DS stands for a (characteristic)

number of degrees of separation

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 1632–1648 (2016)
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the distribution sequences in the small-world net-
works expand exponentially. Since degrees of sep-
aration and the expansion of distribution sequences
are closely associated, if one knows the degrees of
separation for a network, he or she can predict how
adoption dynamics will play out.

Clustering

Social networks are characterized by far higher
levels of clustering compared to those in nonsocial
networks, such as the Internet (router level) and
connections between power stations (Newman and
Park, 2003). Clustering represents the cliquishness
of local subnetworks, or the extent to which friends
of an individual are also friends of each other (Watts
and Strogatz, 1998).

From a dynamic perspective, clustering is
associated with smooth diffusion of a new network
product or service at the initial stage. In general,
the diffusion of network products or services is
quite difficult to initiate, and they often end up
being under-adopted (Rohlfs, 1974, 2001). This is
primarily because the value of a network product
or service increases as more and more customers
adopt interoperable products or services, and
because the value for early adopters is minimal
when there are only a few adopters. This startup
problem is more likely to happen in a poorly clus-
tered network than in a highly clustered network
(Choi, Kim, and Lee, 2010). Since clustering is the
propensity for pairs of individuals to be connected
if they share a mutual acquaintance, the adoption
of a network product or service by one person in
a highly clustered network naturally increases its
value for other mutually connected individuals,
thereby reducing the possibility of insufficient
buildup of network benefits at the initial stage.

Propositions: the moderating role of degrees
of separation

In the previous section, we briefly reviewed recent
research on complex networks by focusing on
three key topological properties: degrees of sep-
aration, distribution sequence, and clustering. In
this section, we tie these notions to the existing
theoretical framework to shed new light on the
controversial issue of incumbency advantage and its
relationship with incompatible entry. We propose
that the number of degrees of separation moderates
the strength of the relationship between an installed

base and network effects, affecting incumbency
advantage and the difficulty of incompatible entry.

Before introducing our propositions, we should
make explicit the major assumptions underlying our
adoption dynamics. First, we assume that individu-
als’ propensities to adopt are constant within indi-
viduals over time, and that some customers decide
to adopt a new service earlier than others as in
previous studies (e.g., Abrahamson and Rosenkopf,
1997; Granovetter, 1978; Katz and Shapiro, 1985;
Lee et al., 2006). Second, each individual’s willing-
ness to adopt a service is primarily influenced by
network effects or benefits. In particular, we con-
sider the context in which these benefits arise from
user–user interactions as is typical in social net-
working services such as Facebook and Twitter.

Given these assumptions, we claim that if a cus-
tomer network is connected by a larger number of
degrees of separation, incumbency advantage tends
to be limited. In such a situation, incompatible entry
is more likely. As discussed earlier, more degrees
of separation in a network imply slow expansion
of its distribution sequence. Under such conditions,
information is likely to spread throughout the net-
work at a slow rate. Similarly, we expect that the
spread of network benefits (effects) throughout the
network will also be slow. This, in turn, will increase
the possibility of the existence of local subnetworks
consisting of nonadopters. In such circumstances,
an entrant with a new, incompatible service can gain
a foothold by reaching these nonadopter subnet-
works. Once nonadopters adopt the new service and
influence other nonadopters to do likewise, the large
number of degrees of separation combined with
well-clustered local interactions will reinforce loy-
alty to the service since adopters’ choices within the
local subnetwork are compatible with one another.
This development weakens the favorable effects of
the installed base of the established service and lim-
its incumbency advantage. Thus, the relationship
between the installed base and network effects may
not be as strong (i.e., self-reinforcing) as was pos-
tulated in previous research.

In a network linked by a small number of
degrees of separation, on the other hand, the
distribution sequence expands exponentially.
Under this condition, network benefits for an early
mover’s service will spread quickly throughout
the network, self-reinforcing the early-mover’s
advantage and making nonadopter subnetworks
vanish rapidly. Thus, a smaller number of degrees
of separation strengthens the relationship between

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 1632–1648 (2016)
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the installed base and network effects. In this
scenario, winner-take-all dynamics are in effect
for the established service, incumbency advantage
becomes self-evident, and incompatible entry is
more difficult.

In sum, we argue that incumbency advantage is
limited in a network characterized by a larger num-
ber of degrees of separation, while in a network
connected by fewer degrees of separation, the rela-
tionship between the installed base and network
effects is strong, thereby increasing the durability of
incumbency advantage. Thus, our central argument
is that degrees of separation play a moderating role
in the relationship between the installed base and
network effects. The moderating effects offer one
way to resolve the controversy regarding incum-
bency advantage and its relationship with incom-
patible entry. In the next section, a computational
model with diverse customer networks is developed
to demonstrate and confirm this claim.

BASIC MODEL

We now develop a computer simulation model
to address the issue of incumbency advantage
in circumstances of incompatible entry. Two key
parameters in this analysis are degrees of separation
and entry timing. The latter is of interest because
it endogenously affects another key variable, the
installed base. In the basic model, we consider the
basic diffusion process of incompatible services
when they are symmetrical in terms of quality,
price, or other features. The only difference lies in
the timing of service introduction. We deliberately
assume this symmetry to demonstrate clearly the
intertemporal influence of the installed base on net-
work effects and adoption dynamics, while isolating
these effects from other potential confounders. This
symmetry condition will be relaxed later.

For simplicity, the model presented here is
restricted to demand-side dynamics. In our model,
each individual’s willingness to adopt a service is
represented by two factors: consumer reluctance to
adopt the service and network effects. Reluctance
can be regarded as a (psychological) cost, whereas
the network effects represent customer benefits.
When these benefits are greater than the user’s
reluctance, service adoption occurs.

In the basic model, only two incompatible ser-
vices, A and B, are presented for simplicity. Since
the two services are identical in quality and other

features, individual i’s willingness to use service j
(j=A, B) at time t is expressed as

Uijt = a𝜔ij(t−1) − Ri, (1)

where a represents the importance of network
effects, and Ri is user i’s inherent reluctance to
adopt any service. Ri is assumed to follow a nor-
mal distribution with N(𝜇,𝜎), which is based on the
commonly used framework of adopter categories
(Rogers, 1995).

The notation 𝜔ij(t–1) represents the proportion of
user i’s acquaintances who are using service j at
time t – 1. More specifically,

𝜔ij(t−1) =
𝜃ij(t−1)

ki
,

where 𝜃ij(t–1) is the number of i’s acquaintances who
adopted service j at time t− 1, and ki is the total
number of i’s acquaintances. Thus, 0≤𝜔ij(t–1) ≤ 1.
The formal representation here appears to reflect
the network effects for a sparse network, in which
each customer is connected to a small number
of other customers. However, this specification
can be extended to a complete network, in which
everyone is connected to everyone else. Let n and 𝜆

denote the total number of customers and installed
base, respectively. In a complete network, ki = n – 1
because everyone is connected to everyone else.
For the same reason, 𝜃ij(t–1) = 𝜆j(t–1). Given that n
is large, 𝜔ij(t–1) = 𝜆j(t–1)/(n – 1)≈ 𝜆j(t–1)/n, which is
a typical representation of network effects in much
of prior work.

Customer networks

In the basic model, a customer network is repre-
sented by the Watts-Strogatz (WS) model (Watts
and Strogatz, 1998). This model has drawn sub-
stantial attention because of its relevance to social
networks. One strength of this network model is
that by tuning a single parameter 𝛽, we can gen-
erate networks with varying degrees of separation.
Thus, by focusing on this tunable parameter, we
can address our central question of whether degrees
of separation affect the durability of incumbency
advantage based on network effects.

The WS model was built upon a popular net-
work model known as the one-dimensional lattice,
which is coupled in geometrically regular ways.
Consider the example on the left in Figure 3. The

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 1632–1648 (2016)
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β = 0 β = 1 

Increasing number of bridges and decreasing degrees of separation

Figure 3. The Watts-Strogatz model. Source: Watts (1999: 68)

model starts with a regular network on a ring sub-
strate with n nodes, where each node has exactly
k nearest neighbors (in this example, n= 20 and
k= 4). As in the connected caveman network, this
regular network is an idealization of social interac-
tion when it is completely constrained by physical
distance. We can construct various types of net-
works in terms of degrees of separation by rewiring
each link from a given node in the regular net-
work to a randomly chosen node with probability
𝛽. The greater the value of 𝛽, the larger the num-
ber of random rewiring possibilities (bridges), and
the smaller the number of degrees of separation
(Watts, 1999).

Adoption rule for early adopters

There are two types of customers: early adopters
and normal users. An early adopter adopts a service
first at time step zero, when network benefits for the
service are nonexistent. This decision stems from
the early adopter’s inherent positive valuation of the
service, that is, Ri < 0. Initially, some early adopters
adopt A, the first available service, with probability
𝜌, while other early adopters (with probability of
1 – 𝜌) do not adopt it. The inactive early adopters
will adopt service B when it is later introduced to
the market and when the growth of service A does
not preempt the entrant’s service B. The inaction
here is often associated with firm practices in reality.
When a firm introduces a new product or service,
it tends to focus on a limited market space partly
because new product introduction involves high
risk and partly because firm resources are usually
limited. For example, Palm initially focused on
Silicon Valley when it first introduced the Palm
Pilot. In a similar vein, when Apple introduced

the iPhone, the company initially focused on a
few important markets, such as the United States
and Europe, ignoring others. Early adopters in
the ignored markets cannot adopt the product or
service.

Adoption rule for normal users

Most customers are assumed to be normal users,
whose inherent valuation of any service is not
positive, unlike that of early adopters. That is,
Ri ≥ 0. Normal users will wait until the benefits
from network effects exceed their negative valu-
ation of the service. That is, the adoption rule is
Uijt > 0. This condition can be satisfied when their
more enthusiastic friends (i.e., early adopters) use
a service and build up network benefits, thereby
influencing normal users. When service B competes
with service A, a normal user’s choice of service A
depends on the size of UiA(t–1) in comparison with
that of UiB(t–1). Between A and B, she chooses a
service, of which Uij(t–1) is the largest.

Switching rule

After service B is introduced, adopters (both early
adopters and normal users) can either stay with the
previous service or switch to the new incompatible
service at every period. For adoption and switching
to service B, we again assume that UiBt > 0. User
i at period t compares the size of UiA(t–1) with
that of UiB(t–1). Suppose that she adopted A at
period t – 1. At period t, she switches to B if
UiA(t–1) <UiB(t–1). Otherwise, she stays with A. The
switching rule for an adopter of B is similar to that
for the adopter of A. This switching allows for the
possibility that the bandwagon effect occurs with

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 1632–1648 (2016)
DOI: 10.1002/smj



1640 J. Lee, J. Song, and J.-S. Yang

Table 1. Parameter values for simulation

Parameter Remarks Range of parameter values analyzed

n Number of individual customers 1,000
k Average number of ties per node 10
𝜌 Fraction of early adopters who adopt incumbent’s

service
0.5

𝜇 Mean for a normal distribution for customer
heterogeneity (Ri)

90

𝜎 Standard deviation for a normal distribution for
customer heterogeneity (Ri)

45

aa Importance of network effects 400
𝛽 Rewiring probability for the Watts-Strogatz

network model
Figure 4: 0, 0.1, 1
Figure 5: 0.001, 0.002, 0.004, 0.008, 0.015,

0.03, 0.06, 0.125, 0.25, 0.5, 1.0
Figures 6 and 7: 0, 0.4
Figure 8: 0.015, 0.03, 0.06, 0.125, 0.25, 0.5, 1.0

Entry time Time of entry of the latecomer Figure 4: 10
Figure 5: 5, 15, 25, 35, 45
Figures 6 and 7: 5, 10, 15, 20, 25, 30, 35, 40, 45,

50, 55
m0 Initial number of nodes for a scale-free network Figures 6 and 7: 3
m Number of new links added per time step Figures 6 and 7: 3
q Service quality of the innovative entrant Figure 8: 0, 10, 100, 200, 300, 500

a The value for a is exceptionally set at 1,000 for the complete network to avoid any possibility of under-adoption. The parameter value
of 400 tuned for the sparse network is inappropriate for the complete network—it can often lead to under-adoption, which violates our
assumption of the S-curve for the diffusion of services with broad appeal.

increasing participation in service B and declining
participation in service A.

SIMULATION RESULTS

The results of the present simulation demonstrate
how network properties affect the dynamics of
incompatible entry and incumbency advantage. In
particular, we numerically confirm the key claim
that degrees of separation moderate the dynamic
relationship between an installed base and network
effects, thereby affecting incumbency advantage.
Our analysis first focuses on competition between
two incompatible services in the WS network
model. Then, we extend our analysis to competi-
tion in various types of networks to establish the
generality of our observations. All the parameter
values for simulations are specified in Table 1.
Here, the parameter values are tuned to generate
the well-known S-curve, which is often observed
in the diffusion of products that have broad
appeal. Without proper tuning, network benefits
at the initial stage may be too small to jump-start
adoption dynamics. Although this under-adoption
possibility does exist in reality, we choose to avoid

it because it is rather trivial and uninteresting from
a theoretical viewpoint.

Effects of degrees of separation

As a starting point, we show typical adoption
dynamics on the WS network model. Recall that
the key parameter 𝛽 controls the number of bridges
and degrees of separation in the network; the larger
the value of 𝛽, the smaller the number of degrees
of separation. As shown in Figure 4a, when 𝛽 = 1
(a random network), or when the customer net-
work is characterized by a small number of degrees
of separation with abundant bridges, the incum-
bent quickly builds up its installed base. When
the entrant introduces the new incompatible ser-
vice at time step 10, very little room remains for
the new service to gain a foothold. The incum-
bent corners the market in the steady state, which
was quickly reached at time step 11. The steady
state here is an equilibrium, where every customer
will stay with the service she chose previously
unless there is a large magnitude, external shock.
When 𝛽 = 0.1 (here, roughly 10% of all ties are
bridges), adoption dynamics slow down somewhat,
as shown in Figure 4b. However, in this particular
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Figure 4. Typical adoption dynamics. (a) Typical simulation run for 𝛽 = 1. (b) Typical simulation run for 𝛽 = 0.1.
(c) Typical simulation run for 𝛽 = 0

scenario, the new incompatible service again fails to
survive.

In contrast, when 𝛽 = 0, or when the customer
network is characterized by the largest possible
number of degrees of separation with no bridges, the
diffusion process is slowest. As shown in Figure 4c,
55 time steps were required for the diffusion pro-
cess to reach 100 percent market penetration. When
the new incompatible service enters at time step
10, the market has enough room for the entrant
to establish a foothold and survive; at that point,
only 23.7 percent of the population had adopted
the incumbent’s service, and many local subnet-
works remained unfilled by users. In the steady
state, the two incompatible services share the mar-
ket. This coexistence is also observed when the
new service is introduced at time step 45. At this
point, 75.6 percent of the population has adopted
the incumbent’s service. All typical realizations
together suggest that the survival of the entrant with
a new, incompatible service depends on degrees of
separation.

Variation in entry timing and degrees
of separation

We conducted simulation experiments to investi-
gate the effects of degrees of separation and entry
timing on incompatible entry more systematically.

To reduce statistical errors, each simulation was
repeated 1,000 times. All data in Figure 5 were
therefore averaged over 1,000 simulation runs.
Figure 5 demonstrates the effects of timing on the
probability of survival and the long-term market
share of the entrant with a new incompatible
service. The entrant’s survival probability is cal-
culated as follows. Out of the total 1,000 repeated
simulations, we count the number of cases in which
the entrant’s service maintains a positive market
share in the steady state. The survival probability
is obtained by dividing this number by the total
number of simulations. The results show that
delayed timing makes it harder for the entrant to
build its own installed base and to survive, shifting
the curves in (a) and (b) to the left. However, timing
affects outcomes only under certain conditions,
such as when 0≤ 𝛽 < 0.4. When a network is
characterized by a sufficiently small number of
degrees of separation (e.g., 𝛽 ≥ 0.4), the simulation
results show that the entrant has almost no chance
of surviving regardless of entry timing. In contrast,
the survival probability and the long-term market
share of the entrant is always positive when a
network is characterized by a larger number of
degrees of separation (e.g., 𝛽 = 0.001).

This result provides numerical evidence that
the entrant’s survival or market share depends
on structural parameter 𝛽, which controls degrees
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(b)

(a)

Figure 5. Effects of entry timing. (a) Entrant’s survival
probability in the steady state. (b) Entrant’s market share

in the steady state

of separation. In particular, the result displays a
threshold-like behavior or regime change roughly
around 𝛽 = 0.4. Below this point, a shared market
regime is in effect where the two incompatible ser-
vices coexist. Above this point, the winner-take-all
regime appears to come into effect, and incum-
bency advantage based on network effects com-
pletely blockades incompatible entry. We delve into
this possibility later with the analysis of other types
of networks.

Variation in incumbent’s installed base

In the previous experiment, entry timing and the
size of the incumbent’s installed base are closely
related, but they are not perfectly correlated. To
isolate the effect of the installed base from other
potential confounders, we also conduct another
experiment, in which a new incompatible service is
introduced after a controlled number of customers

(the installed base) has already adopted the incum-
bent’s service. The results of this experiment are
not fully reported here because they are similar
to those of the previous experiment: Incumbency
advantage is stronger in networks with fewer
degrees of separation, whereas incumbency advan-
tage is weaker in networks with larger degrees of
separation.

Variation in degrees of separation with a high
level of clustering

In the WS model, degrees of separation and cluster-
ing covary. Therefore, it is possible that the key find-
ing above may be confounded by clustering effects.
To isolate the effects of degrees of separation from
potential confounding effects, we modify the WS
model by fixing the high level of clustering—that
is, the WS model with no rewiring. We use this
highly clustered network because high clustering is
typical in real-world social networks (Girvan and
Newman, 2002; Newman and Park, 2003). Then,
we incrementally add new bridges by selecting
two nodes at random and connecting them with-
out removing any existing tie in the network—the
removal of it serves to reduce the level of clustering
in the WS model. We repeat this bridge-adding pro-
cedure to maintain the parameter value parity with
𝛽 in the WS model. The numerical results show that
the bridge effects are so dominant that even if we
control for the level of clustering, the results look
almost identical to those for the original WS model.
The details of these results are presented in Figure 1
of Appendix.

Simulation experiments with various types
of networks

In sum, the results of our simulations using the WS
model suggest that network topology moderates
the relationship between the installed base and
network effects, which in turn, affects incum-
bency advantage. When a customer network is
characterized by fewer degrees of separation, the
incumbent’s large installed base tends to strengthen
its market position over time, leaving little room
for the entrant with the incompatible service. When
the customer network is characterized by a larger
number of degrees of separation, the effects of the
installed base are weakened. In such networks,
the installed base as a global statistic is not a
sufficient predictor of the durability of incumbency
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advantage. Some positive probability exists that the
entrant will find local subnetworks of nonadopters
if the timing of entry is not too late.

The analysis thus far has suggested that degrees
of separation affect the difficulty of incompatible
entry. To check the generality of this observation,
we extend our analysis to complete and scale-free
networks, which are also characterized by a small
number of degrees of separation. Scale-free net-
works are generated according to the following
procedure (Barabási and Albert, 1999). Initially,
a network grows from m0 nodes, all of which are
connected to one another. At each time step, a new
node is linked to m existing nodes according to
the preferential attachment rule: existing node i
will be connected to the new node with probability
Π(ki)= ki/Σjkj, where ki denotes the total number
of ties for node i. Note that i and j are elements
from the set {1, 2, … , n}. We let the network grow
until the total number of nodes is n.

To reduce statistical errors, each simulation was
repeated 1,000 times. As shown in Figure 6, the
dynamics using scale-free and complete networks
are similar to those using the WS networks with
a substantial number of bridges (i.e., 𝛽 ≥ 0.4). The
survival probability and the market share of the
entrant are very close to zero regardless of the
timing of entry chosen in the simulation.

All the networks described so far share one
common topological property: a small number of
degrees of separation. Does this topological prop-
erty affect the dynamic properties of the networks?
To answer this question, we first examine whether
complete, scale-free, and the WS networks with
abundant bridges generate winner-take-all behavior
(Figure 7). In this experiment, all 1,000 simula-
tions for these networks result in winner-take-all
outcomes. On the other hand, in the WS networks
characterized by a larger number of degrees of
separation, the probability of the winner-take-all
scenario is consistently smaller than 1. Although it
is not reported here, connected caveman networks
show similar behavior. The general observation is
thus: Networks with a small number of degrees
of separation generate winner-take-all behavior,
whereas networks with a large number of degrees
of separation do not.

To understand this regularity, we examine the
relationship between network benefits (effects) and
adoption rate by removing the complicating effects
of competition on adoption dynamics. So, we set up
the condition that only one service is available to

(b)

(a)

Figure 6. Simulation experiments in diverse networks.
(a) Entrant’s survival probability in the steady state. (b)

Entrant’s market share in the steady state

Figure 7. Winner-take-all behavior by network topology

attract customers in the market. We define the adop-
tion rate as the number of new adopters per period.
Although the results of this analysis are not fully
reported here, we find that the dynamics of adop-
tion rate are similar in complete, scale-free, and the
WS networks with 𝛽 ≥ 0.4; the adoption rate in each
network rapidly accelerates to a peak. This dramatic
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increase is consistent with the exponential expan-
sion of distribution sequences for networks with
fewer degrees of separation as discussed earlier.
This acceleration of the adoption rate allows a first
mover to enjoy a growing advantage over time. In a
connected caveman network or in the WS network
with smaller 𝛽, however, the adoption rate changes
fairly gradually. This is consistent with the linearly
expanding distribution sequences for networks with
many degrees of separation. This implies that net-
work effects increase gradually as a function of the
adoption rate. Gradual dynamic behavior of this sort
allows latecomers to build up their own customer
bases and survive if the timing of entry is not too
late, or more specifically, if some local subnetworks
remain unfilled by adopters at all.

Simulations on bimodal distribution network

We conduct another sensitivity analysis with a
bimodal distribution network model to overcome
two limitations of the scale-free network model:
(1) an unrealistically low clustering coefficient
compared to those observed in real-world networks
(Ravasz et al., 2002); and (2) the lack of a control
parameter that can be tuned through the middle
ground to represent diverse networks with varying
numbers of ties for hubs (Cohen, Havlin, and
ben-Avraham, 2003). Here, the term distribution
refers to the distribution of the number of ties per
individual. In this model, parameter d controls
the number of degrees of separation in a network.
When d is large, hubs will appear and will be tied
to many other individuals in the network. Then,
the network will be characterized by fewer degrees
of separation. In contrast, when d approaches
zero, hubs will disappear, and the network will be
characterized by the largest number of degrees of
separation. The technical details of the simulations
and their results are presented in Appendix. The
key finding (Figure 2) is that when d is small, or
when a network is characterized by a larger number
of degrees of separation, there is some positive
probability that a latecomer will be successful in
building its own customer base and maintaining
its positive market share in the steady state. As d
increases, however, the latecomer’s success prob-
ability and long-term market share both approach
zero. The result of this analysis is also consistent
with the key finding, the moderating role of degrees
of separation in explaining the relationship between
network effects and the installed base.

Effects of innovative entry

Schumpeter (1950: 84) conceptualized the notion
of “creative destruction,” which represents the
possibility that entrants with innovation undermine
the foundations of incumbents’ very survival.
Invoking this notion, some critics have recently
argued that innovative entrants can match or some-
times sweep away incumbency advantage based on
network effects (e.g., Farrell and Klemperer, 2007;
Liebowitz, 2002; Liebowitz and Margolis, 2001;
Schmalensee, 2000). As mentioned previously,
AOL’s dominant position in the IM market was at
the heart of an antitrust policy debate at the turn
of the new millennium, but the firm’s incumbency
advantage based on its installed base was not subse-
quently amplified. The Schumpeterian perspective
could provide an alternative explanation for the
limitations of incumbency advantage; the evolution
of networking services with new features and func-
tionality might have made existing ones obsolete.

In our model setup, we can incorporate the
Schumpeterian perspective by allowing the entrant
to improve the quality of its service through R&D
activity. Here, we assume that the entrant only
introduces a service with improved quality to
match the incumbency advantage based on network
effects. In the basic model with the WS network,
we added a parameter q to represent the degree of
improvement in quality compared to that of the
incumbent. Thus, user i’s willingness to adopt the
entrant’s service B is

UiBt = a𝜔iB(t−1) − Ri + q.

An important question here is: Under what
parameter condition (i.e., level of q) does innovative
entry diminish moderating role of network topol-
ogy? The simulation results in Figure 8 specify
boundary conditions. When the entrant introduces
an incompatible service of sufficiently greater qual-
ity relative to the existing one, it can not only gain a
foothold in the market, but also displace the incum-
bent’s existing service with a positive probability.
Even when 𝛽 = 1, the entrant has a positive market
share in the steady state if q≥ 200. If q= 500, inno-
vation effects completely wash out the moderating
effects of network topology (𝛽), and the entrant
always drives out the incumbent. The results in the
model with large q are rather consistent with the
Schumpeterian argument outlined above.

In short, the role of degrees of separation
becomes less significant when the entrant’s service

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 1632–1648 (2016)
DOI: 10.1002/smj



Network Structure Effects on Incumbency Advantage 1645

(a)

(b)

Figure 8. Effects of innovative entry. (a) Entrant’s sur-
vival probability in the steady state. (b) Entrant’s market

share in the steady state

is of sufficiently high quality to outweigh the ben-
efits of network effects. On the other hand, when
the outcome of the entrant’s innovation is small
relative to the benefits of network effects, degrees
of separation moderate the relationship between
the installed base and network effects, thereby
affecting incumbency advantage. We believe that
the former case (major innovation) is less frequent
than the latter (incremental innovation).

DISCUSSION

We developed a computational model to examine
incumbency advantage in the face of incompatible
entry. Our study shows that a measure of social
distance, the degrees of separation in a customer
network, determines boundary conditions for the
durability of incumbency advantage. When cus-
tomer networks are characterized by fewer degrees
of separation (the presence of a sufficient num-
ber of hubs or social bridges), market dynamics

tip toward the winner-take-all outcome, as has
been typically shown in prior work on complete
networks. In this case, incumbency advantage is
strong, and early entry is crucial for firm survival.
On the other hand, when a customer network is
characterized by a larger number of degrees of
separation, incumbency advantage is limited, and
latecomers have a better chance of survival.

The findings of this study speak to the
debate regarding network effects as a source
of durable incumbency advantage. Theorizing the
self-reinforcing relationship between the installed
base and network effects, Arthur (1994) argued for
strong incumbency advantage and emphasized the
difficulty of incompatible entry. Critics responded
to this argument by pinpointing that the incum-
bency advantage was not as durable as its advocates
claimed it to be (Katz and Shapiro, 1994; Liebowitz
and Margolis, 1990; Schmalensee, 2000), as evi-
denced by the history of technological competition.
The resolution of the debate lies in identifying the
conditions under which incumbency advantage
based on network effects will or will not be durable.
Much of prior work has taken the importance of
the installed base for granted, implicitly assuming
a complete network, which is characterized by the
smallest number of degrees of separation. Here, the
relationship between an installed base and the bene-
fits of adoption (network effects) is self-reinforcing.
Given that other possibilities are assumed away, the
role of the network structure itself has been pushed
to the background as if the prince of Denmark has
been neglected in the discussion of Hamlet.

Assuming a context in which user benefits arise
from user–user interactions (often called direct
network effects), we show that the self-reinforcing
process does not always develop. In particular,
we view network structure as a moderator that
strengthens or weakens the relationship between an
installed base and network effects. When a network
is characterized by a larger number of degrees of
separation, the relationship between incumbency
advantage and network effects weakens because
its distribution sequence expands slowly within the
network. Then, the benefits of adoption also spread
slowly throughout the network. This is likely to
allow a latecomer with an incompatible service to
find local subnetworks consisting of nonadopters,
for whom the benefits of adopting the established
service will be relatively few because none of their
friends adopt it. By reaching them, the latecomer
can successfully gain a footing. Once some users
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adopt the new service and influence other users to
do likewise, the large number of degrees of sepa-
ration (or the predominance of local interactions)
will encourage these adopters to remain loyal,
since their choices within this local subnetwork
are mutually compatible. Network structures for
instant messaging and Facebook users appear to
be characterized by a large number of degrees of
separation. Most (ordinary) users have a moderate
number of friends, and their user benefits come
mostly from connections with their significant
others. Furthermore, many, real-world networks
consist of disconnected subnetworks (Fleming
et al., 2007; Onnela et al., 2007). This type of
network is less likely to confer strong enough
incumbency advantage to shut out competition.

On the other hand, when a network is character-
ized by a small number of degrees of separation,
the distribution sequence expands exponentially
in complex chains of connections. That is, a
sufficient number of bridges or hubs in a network
can dramatically reduce the number of non-adopter
subnetworks, rapidly increasing customer benefits
(network effects) throughout every nook and cranny
of a network. Then, the size of the installed base
amplifies network effects throughout the network,
self-reinforcing the early mover’s advantage. In
sum, in the scenario with fewer degrees of separa-
tion, the strong relationship between the installed
base and network effects magnifies incumbency
advantage, making incompatible entry difficult.

Our study offers directions for future research
on both theoretical and empirical fronts. On the
theoretical front, future research may relax some
of the simplifying assumptions we imposed. For
example, we focused on a positive feedback pro-
cess on the demand side, while sidestepping the
complexity of the supply side. In innovation races,
some firms tend to be more successful than others,
and winners tend to grow faster and drive out less
successful firms over time (Lee, 2003; Lee et al.,
2010; Nelson and Winter, 1978; Phillips, 1971).
Future research may also add this kind of posi-
tive feedback process on the supply side to enrich
our understanding of the boundary conditions for
incumbency advantage. Another challenging oppor-
tunity for ambitious modelers will be to develop
an endogenous model wherein network evolution
is affected by adoption dynamics. On the empiri-
cal front, there are also great research opportunities.
We have identified an empirically observable vari-
able, degrees of separation, which we propose to

moderate the relationship between network effects
and durability of incumbency advantage. Future
researchers may empirically test this proposition.
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APPENDIX: ADDITIONAL ANALYSES

Model description

The bimodal distribution model represents social
networks with two distinct modes, which are often
observed in some networks of sexual contacts or
social media (Cohen et al., 2003). To construct a
family of networks with varying numbers of ties
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(a)

(b)

Figure 1. Effects of degrees of separation with fixed
clustering. (a) Entrant’s survival probability in the steady

state. (b) Entrant’s market share in the steady state

for hubs, we start with a network characterized by
high clustering. In this network, each individual
has a number of ties to other individuals following
a Gaussian distribution with 𝜇1. Then, we cre-
ate a mixed distribution with another Gaussian
distribution with 𝜇2. We let tunable parameter d
control the distance between the two modes such
that d =𝜇2 – 𝜇1 (Cohen et al., 2003). When d is
large, hubs will be present in the network, and the
network will be characterized by fewer degrees of
separation. When d approaches zero, no hubs will
be present, and the network will be characterized
by larger degrees of separation. In conjunction with

(a)

(b)

Figure 2. Simulation experiments in bimodal distribu-
tion networks. (a) Entrant’s survival probability in the
steady state. (b) Entrant’s market share in the steady state.
Note: Installed base here is represented by the number of

customers as a fraction of the population size

variation of d, we vary the size of the incumbent’s
installed base at time step 0 from 0.1 to 0.9.

The results here are consistent with our key
finding, the moderating role of degrees of separation
in explaining the relationship between network
effects and the installed base. When d is small, there
is some positive probability that a latecomer will
be successful in building its own customer base and
maintaining its positive market share in the steady
state. As d increases, however, the latecomer’s
success probability and long-term market share both
approach zero.
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