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This paper examines the relationship between learning and innovation outcomes, focusing on the trade-off
between exploitation and exploration in learning and innovation. The study identifies two types of learning and
two outcomes of innovation. Exploitation and exploration in learning are inversely associated with innovation
rates and impact. While exploitative, localized learning is positively associated with innovation rates, but
negatively associated with impact, exploratory learning-by-experimentation shows the opposite relationship.
The study examines panel data of 103 companies in the global pharmaceutical industry over a 7-year period in an
empirical test of our hypotheses. Results support the existence of the exploitation and exploration trade-off.
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Innovation is one of the most important organizational processes
and outcomes for value creation (Deeds, DeCarolis, & Coombs, 2000).
Innovation is a central mechanism for strategic change and growth
whereby organizations exploit, explore, and reposition themselves in
changing internal and external conditions (Dittrich & Duysters, 2007).
Both exploitative and exploratory learning govern innovation (March,
1991). Exploitation increases the efficiency of existing technologies,
while exploration is required to produce new technologies of high
quality and impact (Henderson, 1993). Thus, there is an inherent
tension between exploitation and exploration in organizational
learning in terms of outcomes of innovative activities (Sorensen &
Stuart, 2000).

A few empirical studies differentiate impact from innovation rates
as innovation outcomes (see Gittelman & Kogut, 2003; Rosenkopf &
Nerkar, 2001; Sorensen & Stuart, 2000). Key to a firm's technology
strategy is to strike the right balance between the two major types of
learning—exploitative vs. exploratory—depending on what innova-
tion outcomes—rates vs. impact of innovation—the firm is targeting.

The study here asks: How do types of organizational learning
shape innovation outcomes? Existing literature suggests that
exploitative “localized learning” improves immediate innovation
rates, but it often simultaneously reduces incentives for and
competence with high-impact innovation (Ahuja & Lampert,

2001). Thus, firms must combine exploitative “localized learning”
with exploratory “learning-by-experimentation” if they also want to
enhance the impact of innovation.

Although exploitation and exploration and their effects on
innovation have been intensively examined (such as in Ahuja &
Lampert, 2001), few empirical studies investigate the actual trade-offs
between the two. Exceptions include Atuahene-Gima (2005) and Auh
and Menguc (2005) in marketing literature. Unlike those studies,
which used questionnaire methods, however, this paper employs
longitudinal patent data to test empirically the trade-off between
exploitation and exploration. Moreover, joint consideration of
innovation rates and impact in this studywith the inverse relationship
between exploitation and exploration enables us to examine the
discriminating effects of exploitation and exploration on outcomes of
innovation that have not been tested before.

A cursory look at our database in the global pharmaceutical
industry shows an interesting pattern: science-intensive firms such as
Genentech and Immunex, which focus on exploratory learning,
appear to outperform others in terms of innovation impact (refer to
Table 2). On the other hand, the most prolific firms in terms of the
number of patents, such as Bayer and E. I. DuPont, are among the few
that focus on exploitative learning based on strong technological
competence. This interesting pattern is consistent with the inherent
trade-offs between exploitation and exploration in organizational
learning and innovation outcomes that we address in this paper. To
provide more rigorous empirical findings, we constructed panel data
of 103 companies in the global pharmaceutical industry over a 7-year
period and then tested our hypotheses on relationships between
types of learning and innovation outcomes. Results support the
existence of the exploitation and exploration trade-off.
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1. Model and hypotheses

1.1. Theoretical model: Learning and innovation

The literature on organizational learning (Cohen & Levinthal, 1990;
Levitt & March, 1988; March, 1991) and evolutionary economics
(Nelson & Winter, 1982; Stuart & Podolny, 1996) distinguishes
exploitation from exploration. Both exploitative “localized learning”
and exploratory “learning-by-experimentation” shape innovation.

Innovation occurs in the context of a community, one that is evolving
as a whole (Gittelman & Kogut, 2003). Hence, firm-level technological
trajectories influence, and are influenced by, trajectories of other firms
and the evolution of an industry as awhole. At a technology community
level, innovations that serve as sources ofmany subsequent innovations
by other firms can be regarded as high-impact (Rosenkopf & Nerkar,
2001). Exploitative “localized learning” helps a firm to produce more
innovations, but hinders high-impact innovation. On the other hand,
exploratory “learning-by-experimentation” enables a firm to develop
high-impact innovations, but impedes innovation productivity. The
trade-off is inevitable because the two types of learning require
substantially different orientations, strategies, capabilities, and struc-
tures (Argyres, 1996; Auh & Menguc, 2005).

Fig. 1 summarizes the theoretical model in this study, which
examines the effect of exploitation and exploration on innovation
rates and impact. The term “impact” denotes that a technology has
been retained and built upon by other members of the technological
community. In comparison, the term “innovation rates” refers to the
frequency or quantity of new technologies produced.

1.2. Technological competence and innovation

The skills and expertise required for the generation and application
of technology become embodied in a set of routines within a firm
(Nelson & Winter, 1982). Experience with a given set of routines
enhances organizational competence, in part by improving the
reliability of the routines (March, 1991). Organizational routines and
competencies are often configured around a firm's core technology
(Leonard-Barton, 1992). Firm-level variation in competence is a result of
the tacit nature andpath-dependentdevelopmentof technology (Helfat,
1994). A firm's core competence is formed by such path-dependent
exploitation of technological knowledge (Prahalad & Hamel, 1990).
Technological (core) competence refers to the level of efficiency to
which a firm carries out its technological routines internally.

The path-dependent accumulation of new knowledge leading to
technological development reflects the areas of a firm's core
competence (Leonard-Barton, 1992), in which it has conducted a
substantial amount of in-house R&D. To some extent, each firm is
influenced by the trajectory of its technological development in the
past, in that the development of new technology requires the
internally accumulated technology for firm to have an absorptive
capacity (Cohen & Levinthal, 1990). As such, internally accumulated

technological routines and competencies are positively related to a
firm's ability to generate new technology along existing technological
trajectories (Ritter & Gemünden, 2004).

However, because the behavior is routine-based, technological
competence is prone to inertial pressures (Nelson &Winter, 1982). As
organizations experience success, their routines and competencies
become more standardized and specialized, and integrating superior
technologies and practices developed elsewhere may become more
difficult and costly for them (Christensen, 1997). Because of the
uncertainty that occurs in innovation efforts, the results of past
searches become the natural starting points for new searches, and
firms thus continue to build on their own established knowledge
(Dosi, 1982). Such inertia is especially problematic in fast-changing
environments where core capabilities often become core rigidities
(Leonard-Barton, 1992).

With respect to innovation, technological competence is always
both enabling and constraining (Song et al., 2003). Technological
competencies enable firms to exploit innovations more efficiently, but
this can substantially constrain the effectiveness of more exploratory
innovation (Ahuja & Lampert, 2001). In other words, firms with
competence in a particular technology area tend to highly value
knowledge that is close to existing successful technological areas, and
devalue more distant knowledge that is available outside of the firm.
Levitt and March (1988) describe such a situation as a “competency
trap.”

In their study of the relationship between firm aging and innovation,
Sorensen and Stuart (2000) indicate that greater levels of relianceon the
firm's own prior developments leads to more innovation, but that this
innovation is less relevant, and is therefore a hallmark of obsolescence.
In the optical disk industry, Rosenkopf and Nerkar (2001) examine
technological impact and find that technology searching within firm
boundaries has a negative effect on technological impact. Therefore, we
can hypothesize that exploitation of core competence will have a
positive effect on innovation rates, but a negative effect on innovation
impact due to competency traps.

H1. The technological competence of a firm associates positively
with its innovation rates but relates negatively with its innovation
impact.

1.3. Science intensity and innovation

Innovation builds on knowledge gleaned from scientific studies
(Gittelman & Kogut, 2003). In particular, the pharmaceutical industry,
which is our research setting, is dependent on a complex and always-
evolving scientific research base, largely because of an increasing
reliance on biotechnology for its R&D activities (Henderson &
Cockburn, 1994). As a result, the pharmaceutical industry has become
one of the most science-intensive sectors in the economy (Pisano,
2006). The ability to take advantage of scientific advances developed
elsewhere has become increasingly important to R&D in pharmaceu-
tical firms, and is a major source of competitive advantage
(Gambardella, 1992). Although the pharmaceutical industry as a
whole is science driven, we still expect to find firm-level variations in
terms of science intensity, and for some firms in the industry to
conduct more science-driven R&D than others (Cockburn, Henderson,
& Stern, 2000).

The term “science intensity” refers to the degree to which a firm
builds upon or relies on scientific knowledge for its technology
development. Science intensity reflects the tendency forfirms to engage
in exploratory research (Kim & Park, 2010). Science-based R&D is
uncertain and costly, but the payoffs can be high when it is successful,
which is a typical pattern for exploratory search (Atuahene-Gima,
2005).When a firm is more science driven in its R&D, it is more likely to
appreciate the value of exploration and, consequently, be more willing
to engage in exploration in R&D.

Technological competence 

Self-citation ratio

Innovation rates 

Number of patents 

Innovation impact 

Citations per patent 

Note: Solid (dotted) lines indicate positive (negative) effect. 

 H2 
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Average citations in science 
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Fig. 1. Theoretical model. Note: solid (dotted) lines indicate positive (negative) effect.
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However, science-based research efforts take many years to come
to fruition and often do not lead to a patent (Gittelman & Kogut,
2003). Therefore, firms face the dilemma that although such efforts
may be most effective in terms of high-impact innovation, more
focused, intensive exploitation efforts are necessary to be productive
in the short term (March, 1991). Striking a practical balance between
the two is difficult because, besides having limited resources, firms
need different types of organizational orientations and strategies for
each type of innovation (Auh & Menguc, 2005).

Consequently, firms that focus on science-based innovation may
incur the costs of exploration without generating immediate output,
but, in the long run, may produce valuable technologies which are
instrumental to many other subsequent innovations (Ahuja &
Lampert, 2001). Therefore, an intensive science focus is more likely
to lead to high-impact innovations, even though it may curtail a firm's
opportunity to produce more innovations (measured in terms of
innovation rates in this paper).

H2. The science intensity of a firm associates positively with its
innovation impact but relates negatively with its innovation rates.

2. Research design

2.1. Sample and data

This study examines learning and innovation in the global
pharmaceutical industry, in which technologies are complex and
geographically dispersed. In this sector, it is imperative for firms to
develop medicines for a global market and exploit economies of scale
and scope at the global level (Pisano, 2006). This study traces
longitudinal panel data of patents, patent citations and science journal
citations for over 100 companies in the pharmaceutical industry over
a 13-year interval, 1988–2000. This study also traces panel data of
R&D alliances and R&D expenditure, as prior studies have identified
both internal and external R&D efforts as important drivers of
innovation (Cohen & Levinthal, 1989; Wuyts, Dutta, & Stremersch,
2004).

The R&D alliance sample in this study was drawn from the
Securities Data Company (SDC) database. The patent data was
obtained from CHI Research Inc., a research organization specializing
in the development and analysis of patent indicators. As a rule of
thumb, CHI Research compiles data for companies whose patenting
activity is above a certain threshold — generally, 10 or more patents
registered in at least one year during the 1990s. The CHI database
covers 1,025 companies across manufacturing sectors (460 U.S. and
565 non-U.S. companies). Of the 1,025 companies, 315 belong to
Standard Industrial Classification (SIC) code 28. All CHI data (for SIC
28) were then combined with SDC data. Because it was necessary to
have panel data on both R&D alliances and patents, the selection was
restricted to the R&D alliance pairs that belonged to the CHI database;
hence the number of firms was reduced to 103 from 315 firms. Thus
identified, the 103 principal firms were based in three regions—36
firms in the U.S., 42 in Japan and 25 in Europe.

Although the source patent data were available for the years 1988
to 2000, the sample included only up to 1995 to allow for the
calculation of the impact index (i.e., number of citations received per
patent), with a five-year “forward” window. In comparing citations
per patent, one must be very careful to do the comparisons in a
specific year, because citations accumulate over time. For example,
within the 13-year interval from 1988 to 2000, a patent issued in 1988
will have 12 years of citation from subsequent patents, whereas a
patent issued in 1998 will only have citations from two subsequent
years of patents. We chose the five-year time frame based on the
observation that citations decline rapidly after five years (Gittelman &
Kogut, 2003; Jaffe, Trajtenberg, & Henderson, 1993). Thus, with a one-
year lag between independent and dependent variables, only seven

years are usable. Because we are interested in firm-level variation in
learning patterns and outcomes, patent and citation data were
aggregated at the firm level. As a result, 721 observations involving
103 firms over seven years were identified for the empirical test.

2.2. Measurement

When filing patents, companies tend to cite, in their patent
applications, their own as well as other companies’ prior work. Patent
citations are indicators of technological sources and antecedents. The
citation measure shares some of the limitations of other patent
indicators. For example, the propensity to patent varies across
technologies,firmsand industries. Patents representcodifiedknowledge.
Patent examiners are involved in generating citation lists. Despite these
usual limitations, it is nevertheless generally accepted that patents and
citations provide a useful metric, especially in patent-intensive sectors
(Jaffe et al., 1993).

2.3. Dependent variables

Innovation rate is computed as the number of patents in the
industry that were produced by a firm in each year. If one firm
produces more patents than another, this suggests ceteris paribus that
the firm is better able to develop new products, processes, or services
based on this technology (Griliches, 1990). In their studies of the
relationship between alliances and innovation, Stuart (2000) and
Ahuja (2000) used the same measure.

Innovation impact is the ratio of citations received by a firm's
patents from five subsequent years of other patents divided by the
firm's patents. This measure excludes self-citation, i.e., citations that a
firm makes to its own, previously issued patents. We measured the
innovation impact of firm i in year t by the average number of
citations cited by the patents of the other firms in our sample over the
subsequent five years (i.e., year t+1 to year t+5). For example,
Genentech issued 22 patents in 1994, and the 102 other firms in the
sample cited those 22 patents 69 times during the next five years (i.e.,
1995–1999); thus, we measured the innovation impact of Genentech
in 1994 as 3.1364 (i.e., 69/22). Citations per patent indicate the impact
of a firm's patents. This does not guarantee that every highly cited
patent is of significance. It does argue, however, that a firm with a
portfolio of highly cited patents is more likely to generate technology
of significant impact than one whose patents are cited less frequently.

2.4. Independent variables

2.4.1. Technological competence
Self-citations provide one indication of a patent's value to the firm.

They represent areas of technology that are particularly important to
the firm, areas where it has conducted a substantial amount of R&D
and built up an accumulation of core technological competence. If it
has not been self-cited, or at least not for a long time, the patent may
no longer be important to the firm's core domain. Rosenkopf and
Nerkar (2001), Song et al. (2003), and Sorensen and Stuart (2000)
used self-citations in a similar way to evaluate the extent of
exploitative learning or competence. Thus, we calculated patent
self-citations as the ratio of the number of self-citations to the total
number of citationsmade by the firm. For example, Genentechmade a
total of 117 citations in 1994, 32 of which were self-citations (i.e.,
citations from a firm's own later patents); thus, we measured the self-
citation ratio of Genentech in 1994 as 0.2735 (i.e., 32/117).

2.4.2. Science intensity of a firm's patents
Citations include both prior patents and other publications, which

can include any non-patent material such as brochures, books, etc.
Counting the subset of specific references to scientific articles reveals
how closely linked a patent is to cutting-edge scientific research. We
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measured the science intensity of firm i in year t using the average
number of science references on the front pages of the firm's patents
in that year. In our sample, the average is 2.2 per patent, with 21.8 per
patent as the highest among Genentech's patents. High science
intensity indicates that a firm builds its technology based on advances
in science. This measure is particularly important in the pharmaceu-
tical industry because many cutting-edge and important findings in
the industry are reported in scientific journals (Cockburn et al., 2000).

2.5. Control variables

This study includes controls for regional and firm-level variances.
R&D intensity (i.e., R&D expense/sales) was included as a control for
unobserved heterogeneity in terms of ability to innovate. There were
missing observations regarding R&D intensity. We filled in missing
values by mean substitution. This study controls external R&D efforts
by capturing the frequency of R&D alliances. This study did a count of
R&D alliances among firms in the sample for the five years prior to the
focal event (i.e., patent filing). Following the classification of the SDC
database, this study broadly defines R&D alliances as any alliances
involving research and development activities. This study used a five-
year moving window based on previous research, which suggests that
the lifespan for alliances is usually no more than five years (Gulati,
1995).

This study also controls for regional origins. Since the sample
consists of 36 U.S., 42 Japanese, and 25 European firms, the use of U.S.
patent data (patents granted by the U.S. patent office) may raise
possible biases. Thus, the analyses introduced Japanese and European
dummies, with the U.S. as a default. Lastly, the firm-type dummy was
included to see if innovation patterns differ across firm types. CHI
Research (where patent data were obtained) counts patent totals for
particular firms and then groups them based on the firm's primary
activity. The sample consists of two firm types—specialized pharma-
ceutical firms and diversified firms—in SIC 28. The firm-type dummy
was coded as 1 for specialized pharmaceutical firms and 0 for
diversified firms.

2.6. Methods

Two separate analyses were run for two different kinds of
dependent variables. In the analyses, two problems were addressed.
First, innovation rates were represented as a count of patents in each
year that takes only discrete, non-negative integer values. Under these
conditions, Poisson or negative binomial models are appropriate.
Unlike the Poisson model, the negative binomial model does not
assume the mean-variance equality of the count-dependent variable.
The statistics indicated an over-dispersion problem. This study thus
employed the negative binomial model.

Our second dependent variable is a ratio of citations to patents
(i.e., citations per patent). There is an estimation problem inherent in

panel data. A methodological concern is that measurements on the
same subjects at different times are a source of autocorrelation in
panel data. Similarly, panel data are also vulnerable to a problem of
heteroscedasticity (i.e., non-constant error variances). To correct for
this bias, we used a “generalized linear regression model” using
Limdep 7.0 (Greene, 1995). The Hausman statistic supports our use of
the random effects model.

3. Results

A Pearson correlation analysis between variables was first
performed as a preliminary test. The correlation matrix in Table 1
indicates a potential multicollinearity problem. Thus, for Models 2 and
4 in Table 3, we checked VIF, or Variance Inflation Factors, which
turned out to show acceptably low values ranging from 1.07 to 1.67
(Neter, Kutner, Nachtsheim, & Wasserman, 1996).

The two dependent variables—innovation rates and impact—are
not correlated with each other, verifying that the two are distinct
constructs. Overall, correlation statistics between the dependent and
independent variables are consistent with predictions. Technological
competence is positively correlated with innovation rates, but
negatively correlated with innovation impact. By contrast, science
intensity is negatively correlated with innovation rates, but positively
correlated with innovation impact. R&D alliances are positively
correlated with both innovation rates and impact. The statistics also
reveal the differences across firm types and across regions. The U.S.
firm dummy is positively correlated with innovation rates, impact,
competence, science intensity, R&D alliances, and R&D intensity. By
contrast, the Japanese firm dummy is negatively correlated with all
those variables. The European firm dummy is positively correlated
only with innovation rates. The firm-type difference is also apparent:
specialized pharmaceutical firms are less prominent in terms of
innovation rates, but more prominent in terms of innovation impact,
science intensity, R&D alliances, and R&D intensity, as opposed to
diversified firms.

Table 2 presents the top 10 companies in the sample in terms of
innovation rates and impact, technological competence, and science
intensity. Our 103 sample firms consist of 36 U.S., 42 Japanese, and 25
European firms. As shown in Table 2, however, the top 10 lists are
mainly occupied by U.S. and European firms. Japanese firms are
under-represented in the lists. Noticeably, U.S. firms are leading in
both science intensity and innovation impact, though they lag behind
European firms in innovation rates. Table 2 shows that the patterns
appear to corroborate the correlation results in Table 1.

Table 3 presents the two models from the negative binomial
regression in the first and second columns, and the two other models
from generalized linear regression analysis in the third and fourth
columns. As a baseline, Models 1 and 3 load only the control variables.
The coefficient of the R&D intensity variable is negative and significant
for innovation rates. The negative coefficient of the variable is not so

Table 1
Descriptive statistics and correlation matrix.

Mean S.D. Min. Max. (1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) Innovation rates 60.94 85.37 1 505 1.00
(2) Innovation impact 0.81 0.59 0 4.0 −0.02 1.00
(3) Technological competence 0.36 0.15 0 0.88 0.27* −0.11* 1.00
(4) Science intensity 2.19 3.58 0 37.5 −0.11* 0.35* −0.13* 1.00
(5) R&D intensity 0.13 0.34 0.0001 6.12 −0.08 0.15* −0.07 0.45* 1.00
(6) R&D alliances 0.76 1.41 0 12 0.22* 0.14* 0.03 0.27* 0.04 1.00
(7) U.S. firm dummy 0.35 0.47 0 1 0.09* 0.25* 0.12* 0.31* 0.19* 0.12* 1.00
(8) Japanese firm dummy 0.41 0.49 0 1 −0.29* −0.29* −0.13* −0.30* −0.15* −0.17* −0.61* 1.00
(9) European firm dummy 0.24 0.42 0 1 0.23* 0.07 0.02 0.00 −0.04 0.05 −0.42* −0.47* 1.00
(10) Firm-type dummy 0.54 0.49 0 1 −0.24* 0.28* −0.06 0.37* 0.19* 0.15* 0.30* −0.39* 0.11*

* Correlation is significant at the 0.05 level (two-tailed). All independent variables are lagged by one year.
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surprising, given that R&D intensity is normalized by sales, which is
highly (=0.79) correlated with innovation rates. The estimated
coefficients for the R&D alliance variable are statistically significant in
Model 1, but not in Model 3. This result implies that the effect of R&D
alliances is significant for innovation rates, but not for innovation
impact. The Japanese dummy is negatively associated with both
innovation rates and impact. The European dummy is insignificant.
The firm-type dummy is positively associatedwith innovation impact.
These results for dummy variables are largely consistent with the
correlation patterns.

Explanatory variables were added to Models 2 and 4 for the
hypothesis testing. The significant improvement of the log-likelihood
functions from −3489.42 to −3439.52 in Models 1 and 2 (χ2=99.8,
pb0.001) suggests that a better-fitting model emerges as the
explanatory variables are introduced. Also, the significant improve-
ment of R2 in Models 3 and 4 (ΔR2=0.052, ΔF=1.047, pb0.001)
suggests that adding the technological competence and science
intensity variables results in a better-fitting model. H1 predicts a
positive effect of technological competence on innovation rates, but a
negative effect on innovation impact. In H2, the opposite pattern is

predicted for science intensity. The results from Models 2 and 4
support both H1 and H2, suggesting that a firm's technological
competence leads to more innovation but less impact, whereas the
science intensity of its technology development leads to greater
innovation impact, but less innovation.

4. Conclusions and discussion

This study advances the evolving research on innovation by
considering the duality of any innovation process in terms of two
outcomes: rates and impact. March (1991) highlights the inherent
tension between exploitation and exploration in organizational
learning and innovation processes. This tension is the constant focus
of subsequent studies in innovation, management, and marketing
literature. Indeed, there is a rich tradition in marketing of studying
diverse aspects of innovation and new product development (Wuyts
et al., 2004). Notwithstanding the merits of this tradition, however,
marketing literature tends to rely on the questionnaire method via
survey, which suffers from self-report bias in measuring learning and
innovation (Sorescu, Chandy, & Prabhu, 2003). The longitudinal
investigation here of patent data extends this line of research by
providing additional hard evidence on the trade-off between
exploitation and exploration.

This finding implies that if a firm wants to improve its innovative
capabilities and output in terms of frequency and impact, then it
should strike a balance between exploitative, localized learning and
exploratory learning-by-experimentation. This idea is, in essence, the
popular “ambidexterity” premise (Tushman & O'Reilly, 1996), which
says that firms must undergo the paradoxical strategic process of
balancing between exploitative and exploratory innovation strategies
(He & Wong, 2004). Indeed, seeking ambidexterity by conducting
both types of innovation is a reality in the fast-evolving technological
and market conditions of today. At any given time, firms may have to
emphasize either exploration or exploitation, yet over time, a balance
should be maintained. Incidentally, this remains a fruitful area for
further research.

The result for the R&D alliances variable deserves some explana-
tions. By controlling for R&D alliances, we emphasize that technology
learning occurs not only within a firm boundary, but also across firm
boundaries. Results imply that R&D alliances contribute to innovation
rates, but not to innovation impact. If we combine this finding with
findings regarding technological competence and science intensity,
we could suggest that exploration in the form of strengthening the
external linkage to cutting-edge scientific knowledge and technology
may be the only way to enhance innovation impact or improve the
chances of impactful innovation. By juxtaposing internal and external
R&D exploitation–exploration, firms may be able to overcome trade-
offs in learning and innovation (Lavie & Rosenkopf, 2006). However,

Table 2
Top 10 lists of companies in main variables.

Rank Innovation rates Innovation impact Technological competence Science intensity

Company Value Company Value Company Value Company Value

1 Bayer AG (Germany) 461 Genentech Inc. (US) 2.66 Alza Corp (US) 0.83 Genentech Inc. (US) 21.81
2 E. I. DuPont (US) 402 Immunex Corp (US) 2.13 Perkin-Elmer Corp (US) 0.62 Enzon Inc. (US) 14.07
3 BASF (Germany) 361 G D Searle (US) 1.84 Kureha Chemical (Japan) 0.61 Immunex Corp (US) 13.17
4 Hoechst AG (Germany) 345 Monsanto Co (US) 1.75 Chisso Corporation (Japan) 0.60 Chiron Corp (US) 7.82
5 Ciba-Geigy AG (Switzerland) 304 Marion Merrell Dow (US) 1.66 Wellcome PLC (UK) 0.57 Neorx Corp (US) 7.31
6 Dow Chemical (US) 293 Roussel UCLAF (France) 1.64 E. I. DuPont (US) 0.56 Research Corp (US) 7.18
7 Merck (US) 170 Boehringer Mannheim (Germany) 1.56 Degussa AG (Germany) 0.55 Chugai Co (Japan) 7.17
8 Johnson & Johnson (US) 159 SmithKline Beecham (UK) 1.53 Bayer AG (Germany) 0.54 Institut Merieux SA (France) 5.65
9 Rhone Poulenc SA (France) 133 Warner-Lambert (US) 1.47 Mitsubishi Chemical (Japan) 0.53 Novo Nordisk A/S (Denmark) 5.61
10 Bristol-Myers Squibb (US) 130 Wellcome PLC (UK) 1.44 Beckman Instruments (US) 0.52 Upjohn Inc. (US) 5.50

Note: Innovation rates is measured by number of patents per year; innovation impact by citations per patent; technological competence by self-citation ratio; and science intensity
by average number of citations in science journals.

Table 3
Estimates of innovation rates and impact.

Negative binomial
estimates of innovation
rates

GLS estimates of
innovation impact

Model 1 Model 2 Model 3 Model 4

Explanatory variables
Technological competence 1.79*** −0.34*

(0.24) (0.15)
Science intensity −0.06*** 0.03***

(0.01) (0.01)
Control variables

R&D intensity −0.59*** −0.29** −0.06 −0.11
(0.09) (0.11) (0.07) (0.07)

R&D alliances 0.17*** 0.21*** 0.02 0.01
(0.02) (0.02) (0.02) (0.01)

Japanese dummy −1.20*** −1.10*** −0.32*** −0.29***
(0.07) (0.08) (0.09) (0.08)

European dummy 0.02 0.05 −0.11 −0.09
(0.08) (0.08) (0.09) (0.09)

Firm-type dummy −0.92*** −0.74*** 0.22** 0.16*
(0.06) (0.06) (0.08) (0.07)

Constant 4.79*** 4.02*** 0.84*** 0.94***
(0.07) (0.13) (0.08) (0.10)

N 721 721 721 721
Over-dispersion parameters 0.69*** 0.61*** n.a. n.a.
Log likelihood −3489.42 −3439.52 n.a. n.a.
R-squared n.a. n.a. 0.136 0.187
Adjusted R-squared n.a. n.a. 0.130 0.179

*pb0.05, **pb0.01, ***pb0.001. Standard errors in parentheses. Not applicable (n.a.).
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our data constraints prevented us from distinguishing between
exploitation and exploration within the domain of R&D alliances.
Even if the measure of the intent is elusive, this remains an area for
further research, perhaps using more detailed survey-type alliance
data.

Relatedly, due to data constraints, this study could not examine
specific environmental circumstances where either exploitation or
exploration would be more effective in improving innovation rates
and/or impact.

In general, we predict that exploration efforts may become more
value-adding when a firm faces greater complexity and uncertainty in
its innovation. Indeed, Fleming and Sorenson (2004) show that
science-guided search associates closely with high-impact innova-
tions, especially for the highly complex innovations in pharmaceuti-
cals. Future research along this line may enrich our understanding of
how a firm manages innovation in a turbulent technological and
market environment. Although the findings may be generally
applicable to other technology-intensive industries where patenting
innovative outputs is important, such a claim is an empirical question.
Thus, conducting future research is necessary in other industrial
settings to corroborate the findings in this study.
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